import torch
from torch import Tensor
from collections import OrderedDict
import torch.nn.functional as F
from torch import nn
from torch.jit.annotations import Tuple, List, DictclassBottleneck(nn.Module):expansion =4def__init__(self, in_channel, out_channel, stride=1, downsample=None, norm_layer=None):super(Bottleneck, self).__init__()if norm_layer isNone:norm_layer = nn.BatchNorm2dself.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,kernel_size=(1,1), stride=(1,1), bias=False)# squeeze channelsself.bn1 = norm_layer(out_channel)# -----------------------------------------self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,kernel_size=(3,3), stride=(stride,stride), bias=False, padding=(1,1))self.bn2 = norm_layer(out_channel)# -----------------------------------------self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel * self.expansion,kernel_size=(1,1), stride=(1,1), bias=False)# unsqueeze channelsself.bn3 = norm_layer(out_channel * self.expansion)self.relu = nn.ReLU(inplace=True)self.downsample = downsampledefforward(self, x):identity = xif self.downsample isnotNone:identity = self.downsample(x)out = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)out = self.conv3(out)out = self.bn3(out)out += identityout = self.relu(out)return outclassResNet(nn.Module):def__init__(self, block, blocks_num, num_classes=1000, include_top=True, norm_layer=None):''':param block:块:param blocks_num:块数:param num_classes: 分类数:param include_top::param norm_layer: BN'''super(ResNet, self).__init__()if norm_layer isNone:norm_layer = nn.BatchNorm2dself._norm_layer = norm_layerself.include_top = include_topself.in_channel =64self.conv1 = nn.Conv2d(in_channels=3, out_channels=self.in_channel, kernel_size=(7,7), stride=(2,2),padding=(3,3), bias=False)self.bn1 = norm_layer(self.in_channel)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(block,64, blocks_num[0])self.layer2 = self._make_layer(block,128, blocks_num[1], stride=2)self.layer3 = self._make_layer(block,256, blocks_num[2], stride=2)self.layer4 = self._make_layer(block,512, blocks_num[3], stride=2)if self.include_top:self.avgpool = nn.AdaptiveAvgPool2d((1,1))# output size = (1, 1)self.fc = nn.Linear(512* block.expansion, num_classes)'''初始化'''for m in self.modules():ifisinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')def_make_layer(self, block, channel, block_num, stride=1):norm_layer = self._norm_layerdownsample =Noneif stride !=1or self.in_channel != channel * block.expansion:downsample = nn.Sequential(nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=(1,1), stride=(stride,stride), bias=False),norm_layer(channel * block.expansion))layers =[]layers.append(block(self.in_channel, channel, downsample=downsample,stride=stride, norm_layer=norm_layer))self.in_channel = channel * block.expansionfor _ inrange(1, block_num):layers.append(block(self.in_channel, channel, norm_layer=norm_layer))return nn.Sequential(*layers)defforward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)if self.include_top:x = self.avgpool(x)x = torch.flatten(x,1)x = self.fc(x)return xclassIntermediateLayerGetter(nn.ModuleDict):"""Module wrapper that returns intermediate layers from a modelsIt has a strong assumption that the modules have been registeredinto the models in the same order as they are used.This means that one should **not** reuse the same nn.Moduletwice in the forward if you want this to work.Additionally, it is only able to query submodules that are directlyassigned to the models. So if `models` is passed, `models.feature1` canbe returned, but not `models.feature1.layer2`.Arguments:model (nn.Module): models on which we will extract the featuresreturn_layers (Dict[name, new_name]): a dict containing the namesof the modules for which the activations will be returned asthe key of the dict, and the value of the dict is the nameof the returned activation (which the user can specify)."""__annotations__ ={"return_layers": Dict[str,str],}def__init__(self, model, return_layers):ifnotset(return_layers).issubset([name for name, _ in model.named_children()]):raise ValueError("return_layers are not present in models")# {'layer1': '0', 'layer2': '1', 'layer3': '2', 'layer4': '3'}orig_return_layers = return_layersreturn_layers ={k: v for k, v in return_layers.items()}layers = OrderedDict()# 遍历模型子模块按顺序存入有序字典# 只保存layer4及其之前的结构,舍去之后不用的结构for name, module in model.named_children():layers[name]= moduleif name in return_layers:del return_layers[name]ifnot return_layers:breaksuper(IntermediateLayerGetter, self).__init__(layers)self.return_layers = orig_return_layersdefforward(self, x):out = OrderedDict()# 依次遍历模型的所有子模块,并进行正向传播,# 收集layer1, layer2, layer3, layer4的输出for name, module in self.named_children():x = module(x)if name in self.return_layers:out_name = self.return_layers[name]out[out_name]= xreturn outclassFeaturePyramidNetwork(nn.Module):"""Module that adds a FPN from on top of a set of feature maps. This is based on`"Feature Pyramid Network for Object Detection" <https://arxiv.org/abs/1612.03144>`_.The feature maps are currently supposed to be in increasing depthorder.The input to the models is expected to be an OrderedDict[Tensor], containingthe feature maps on top of which the FPN will be added.Arguments:in_channels_list (list[int]): number of channels for each feature map thatis passed to the moduleout_channels (int): number of channels of the FPN representationextra_blocks (ExtraFPNBlock or None): if provided, extra operations willbe performed. It is expected to take the fpn features, the originalfeatures and the names of the original features as input, and returnsa new list of feature maps and their corresponding names"""def__init__(self, in_channels_list, out_channels, extra_blocks=None):super(FeaturePyramidNetwork, self).__init__()# 用来调整resnet特征矩阵(layer1,2,3,4)的channel(kernel_size=1)self.inner_blocks = nn.ModuleList()# 对调整后的特征矩阵使用3x3的卷积核来得到对应的预测特征矩阵self.layer_blocks = nn.ModuleList()for in_channels in in_channels_list:if in_channels ==0:continueinner_block_module = nn.Conv2d(in_channels, out_channels,(1,1))layer_block_module = nn.Conv2d(out_channels, out_channels,(3,3), padding=(1,1))self.inner_blocks.append(inner_block_module)self.layer_blocks.append(layer_block_module)# initialize parameters now to avoid modifying the initialization of top_blocksfor m in self.children():ifisinstance(m, nn.Conv2d):nn.init.kaiming_uniform_(m.weight, a=1)nn.init.constant_(m.bias,0)self.extra_blocks = extra_blocksdefget_result_from_inner_blocks(self, x, idx):# type: (Tensor, int) -> Tensor"""This is equivalent to self.inner_blocks[idx](x),but torchscript doesn't support this yet"""num_blocks =len(self.inner_blocks)if idx <0:idx += num_blocksi =0out = xfor module in self.inner_blocks:if i == idx:out = module(x)i +=1return outdefget_result_from_layer_blocks(self, x, idx):# type: (Tensor, int) -> Tensor"""This is equivalent to self.layer_blocks[idx](x),but torchscript doesn't support this yet"""num_blocks =len(self.layer_blocks)if idx <0:idx += num_blocksi =0out = xfor module in self.layer_blocks:if i == idx:out = module(x)i +=1return outdefforward(self, x):# type: (Dict[str, Tensor]) -> Dict[str, Tensor]"""Computes the FPN for a set of feature maps.Arguments:x (OrderedDict[Tensor]): feature maps for each feature level.Returns:results (OrderedDict[Tensor]): feature maps after FPN layers.They are ordered from highest resolution first."""# unpack OrderedDict into two lists for easier handlingnames =list(x.keys())x =list(x.values())# 将resnet layer4的channel调整到指定的out_channels# last_inner = self.inner_blocks[-1](x[-1])last_inner = self.get_result_from_inner_blocks(x[-1],-1)# result中保存着每个预测特征层results =[]# 将layer4调整channel后的特征矩阵,通过3x3卷积后得到对应的预测特征矩阵# results.append(self.layer_blocks[-1](last_inner))results.append(self.get_result_from_layer_blocks(last_inner,-1))# 倒序遍历resenet输出特征层,以及对应inner_block和layer_block# layer3 -> layer2 -> layer1 (layer4已经处理过了)# for feature, inner_block, layer_block in zip(# x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1]# ):# if not inner_block:# continue# inner_lateral = inner_block(feature)# feat_shape = inner_lateral.shape[-2:]# inner_top_down = F.interpolate(last_inner, size=feat_shape, mode="nearest")# last_inner = inner_lateral + inner_top_down# results.insert(0, layer_block(last_inner))for idx inrange(len(x)-2,-1,-1):inner_lateral = self.get_result_from_inner_blocks(x[idx], idx)feat_shape = inner_lateral.shape[-2:]inner_top_down = F.interpolate(last_inner, size=feat_shape, mode="nearest")last_inner = inner_lateral + inner_top_downresults.insert(0, self.get_result_from_layer_blocks(last_inner, idx))# 在layer4对应的预测特征层基础上生成预测特征矩阵5if self.extra_blocks isnotNone:results, names = self.extra_blocks(results, names)# make it back an OrderedDictout = OrderedDict([(k, v)for k, v inzip(names, results)])return outclassLastLevelMaxPool(torch.nn.Module):"""Applies a max_pool2d on top of the last feature map"""defforward(self, x, names):# type: (List[Tensor], List[str]) -> Tuple[List[Tensor], List[str]]names.append("pool")x.append(F.max_pool2d(x[-1],1,2,0))return x, namesclassBackboneWithFPN(nn.Module):"""Adds a FPN on top of a models.Internally, it uses torchvision.models._utils.IntermediateLayerGetter toextract a submodel that returns the feature maps specified in return_layers.The same limitations of IntermediatLayerGetter apply here.Arguments:backbone (nn.Module)return_layers (Dict[name, new_name]): a dict containing the namesof the modules for which the activations will be returned asthe key of the dict, and the value of the dict is the nameof the returned activation (which the user can specify).in_channels_list (List[int]): number of channels for each feature mapthat is returned, in the order they are present in the OrderedDictout_channels (int): number of channels in the FPN.Attributes:out_channels (int): the number of channels in the FPN"""def__init__(self, backbone, return_layers, in_channels_list, out_channels):''':param backbone: 特征层:param return_layers: 返回的层数:param in_channels_list: 输入通道数:param out_channels: 输出通道数'''super(BackboneWithFPN, self).__init__()'返回有序字典模型'self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)self.fpn = FeaturePyramidNetwork(in_channels_list=in_channels_list,out_channels=out_channels,extra_blocks=LastLevelMaxPool(),)# super(BackboneWithFPN, self).__init__(OrderedDict(# [("body", body), ("fpn", fpn)]))self.out_channels = out_channelsdefforward(self, x):x = self.body(x)x = self.fpn(x)return xdefresnet50_fpn_backbone():# FrozenBatchNorm2d的功能与BatchNorm2d类似,但参数无法更新# norm_layer=misc.FrozenBatchNorm2dresnet_backbone = ResNet(Bottleneck,[3,4,6,3],include_top=False)# freeze layers# 冻结layer1及其之前的所有底层权重(基础通用特征)for name, parameter in resnet_backbone.named_parameters():if'layer2'notin name and'layer3'notin name and'layer4'notin name:'''冻结权重,不参与训练'''parameter.requires_grad_(False)# 字典名字return_layers ={'layer1':'0','layer2':'1','layer3':'2','layer4':'3'}# in_channel 为layer4的输出特征矩阵channel = 2048in_channels_stage2 = resnet_backbone.in_channel //8in_channels_list =[in_channels_stage2,# layer1 out_channel=256in_channels_stage2 *2,# layer2 out_channel=512in_channels_stage2 *4,# layer3 out_channel=1024in_channels_stage2 *8,# layer4 out_channel=2048]out_channels =256return BackboneWithFPN(resnet_backbone, return_layers, in_channels_list, out_channels)if __name__ =='__main__':net = resnet50_fpn_backbone()x = torch.randn(1,3,224,224)for key,value in net(x).items():print(key,value.shape)
腾讯云的一个分析,明显是看了这个论文和草案的 : 最新的是应该是这个 A Google Congestion Control Algorithm for Real-Time Communication draft-ietf-rmcat-gcc-02 下面的这个应该过期了: draft-alvestrand-rmcat-congestion-03
UWA Gears 是UWA最新发布的无SDK性能分析工具。针对移动平台,提供了实时监测和截帧分析功能,帮助您精准定位性能热点,提升应用的整体表现。
本次版本更新主要是新增了Thread Load指标,帮助大家更直观地了解多线程任务的负载分布情…