基于Spring Boot的体育商品推荐系统

一、系统背景与目的

随着电子商务的快速发展和人们健康意识的提高,体育商品市场呈现出蓬勃发展的态势。然而,传统的体育商品销售方式存在商品种类繁多、用户选择困难、个性化需求无法满足等问题。为了解决这些问题,基于Spring Boot的体育商品推荐系统应运而生。该系统旨在通过智能推荐算法,分析用户的历史行为和偏好,为用户提供个性化的商品推荐,从而提高用户的购物满意度和商家的销售量。

二、技术架构

后端:采用Spring Boot框架构建后端服务,该框架具有自动配置、简洁代码和丰富生态等优势,能够快速构建稳定、可扩展的系统。同时,结合MyBatis持久化框架进行数据库操作,使用MySQL数据库进行数据存储。
前端:可以采用Vue.js等前端技术,结合Element UI等组件库,实现良好的用户体验和交互效果。前端页面设计简洁美观,能够提升用户的购物体验。
算法:系统采用协同过滤算法作为核心推荐算法。协同过滤算法基于用户行为和兴趣的相似性来进行推荐,可以分为基于用户的协同过滤和基于物品的协同过滤两种类型。系统可以根据实际情况选择合适的算法类型进行推荐。

部分代码

def users_login(request):if request.method in ["POST", "GET"]:msg = {'code': normal_code, "msg": mes.normal_code}req_dict = request.session.get("req_dict")if req_dict.get('role')!=None:del req_dict['role']datas = users.getbyparams(users, users, req_dict)if not datas:msg['code'] = password_error_codemsg['msg'] = mes.password_error_codereturn JsonResponse(msg)req_dict['id'] = datas[0].get('id')return Auth.authenticate(Auth, users, req_dict)def users_register(request):if request.method in ["POST", "GET"]:msg = {'code': normal_code, "msg": mes.normal_code}req_dict = request.session.get("req_dict")error = users.createbyreq(users, users, req_dict)if error != None:msg['code'] = crud_error_codemsg['msg'] = errorreturn JsonResponse(msg)def users_session(request):''''''if request.method in ["POST", "GET"]:msg = {"code": normal_code,"msg":mes.normal_code, "data": {}}req_dict = {"id": request.session.get('params').get("id")}msg['data'] = users.getbyparams(users, users, req_dict)[0]return JsonResponse(msg)def users_logout(request):if request.method in ["POST", "GET"]:msg = {"msg": "退出成功","code": 0}return JsonResponse(msg)def users_page(request):''''''if request.method in ["POST", "GET"]:msg = {"code": normal_code, "msg": mes.normal_code,"data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}req_dict = request.session.get("req_dict")tablename = request.session.get("tablename")try:__hasMessage__ = users.__hasMessage__except:__hasMessage__ = Noneif __hasMessage__ and __hasMessage__ != "否":if tablename != "users":req_dict["userid"] = request.session.get("params").get("id")if tablename == "users":msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \msg['data']['pageSize'] = users.page(users, users, req_dict)else:msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \msg['data']['pageSize'] = [],1,0,0,10return JsonResponse(msg)

效果图

请添加图片描述

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

三、功能模块

用户管理模块:实现用户注册、登录、权限管理等功能。不同角色拥有不同权限,如管理员可以管理用户和商品信息,普通用户可以浏览和购买商品。
商品管理模块:支持商品分类管理、信息增删改查、评论管理等功能。管理员和商家可以发布商品信息,用户可以浏览、评论和购买商品。
推荐系统模块:基于协同过滤算法,为用户提供个性化推荐服务。系统会根据用户的历史行为和偏好,推荐相似的体育商品,提高用户的购物满意度和商家的销售量。
订单管理模块:支持订单查询、订单状态更新等功能。用户可以查看自己的订单状态和历史记录,管理员可以管理所有订单并更新状态。
交流论坛与留言板模块:用户之间可以互动、留言,管理员负责审核内容。这个模块为用户提供了一个交流的平台,增强了用户之间的互动性和参与感。

四、系统特点

个性化推荐:系统采用协同过滤算法,根据用户的历史行为和偏好进行个性化推荐,提高了推荐的准确性和用户的满意度。
高效性:系统采用Spring Boot框架构建,具有高效、可扩展等优势。同时,优化数据库查询和算法,提高了系统的响应速度。
数据安全:系统通过权限管理和数据加密等措施保障用户数据安全。用户可以放心使用系统进行购物和交流。
兼容性:系统支持不同设备和浏览器访问,为用户提供了更加便捷的使用体验。

五、应用效果与展望

基于Spring Boot的体育商品推荐系统已经在实际应用中取得了显著的效果。它不仅提高了用户的购物满意度和商家的销售量,还通过个性化推荐服务增强了用户的购物体验和参与度。未来,随着电子商务技术的不断发展和用户需求的不断变化,该系统将继续优化和完善功能,如增加智能客服、优化推荐算法等,为体育商品销售提供更加全面、高效、便捷的服务。

综上所述,基于Spring Boot的体育商品推荐系统是一个功能完善、性能优越、数据安全、可扩展性强的电商平台。它将为体育商品销售提供更加智能、精准的商品推荐服务,满足现代消费者的需求,促进体育商品市场的增长和发展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/63378.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java Nio Netty】基于TCP的简单Netty自定义协议实现(万字,全篇例子)

基于TCP的简单Netty自定义协议实现(万字,全篇例子) 前言 有一阵子没写博客了,最近在学习Netty写一个实时聊天软件,一个高性能异步事件驱动的网络应用框架,我们常用的SpringBoot一般基于Http协议&#xff0…

【2025最新计算机毕业设计】基于SSM校园歌手赛事管理系统【提供源码+答辩PPT+文档+项目部署】

作者简介:✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌ 主要内容:🌟Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能…

Visual Studio 使用 GitHub Copilot 协助调试

🎀🎀🎀【AI辅助编程系列】🎀🎀🎀 Visual Studio 使用 GitHub Copilot 与 IntelliCode 辅助编码Visual Studio 安装和管理 GitHub CopilotVisual Studio 使用 GitHub Copilot 扩展Visual Studio 使用 GitHu…

了解ARM的千兆以太网——RK3588

1. 简介 本文并不重点讲解调试内容,重点了解以太网在ARM设计中的框架以及在设备树以及驱动的一个整体框架。了解作为一个驱动开发人员当拿到一款未开发过的ARM板卡应该怎么去把网卡配置使用起来。 2. 基础知识介绍 在嵌入式ARM中实现以太网的解决方案通常有以下两种…

Springboot家政服务管理系统

摘 要 科技进步的飞速发展引起人们日常生活的巨大变化,电子信息技术的飞速发展使得电子信息技术的各个领域的应用水平得到普及和应用。信息时代的到来已成为不可阻挡的时尚潮流,人类发展的历史正进入一个新时代。在现实运用中,应用软件的工作…

DC-9笔记

靶机信息 官网:DC: 9 ~ VulnHub 只有一个flag,官网上没给其他提示 信息收集 nmap 192.168.66.2-254nmap 192.168.66.146 -A -p-开放了80端口,22端口是filtered的,被过滤? NMAP 六种端口状态解读_nmap filtered-CSDN博客 那来看看http服务吧 http(80) 页脚是空白的,插件也…

STM32-笔记3-驱动蜂鸣器

1、复制03项目,重命名为04项目 打开04项目的Drivers/BSP/led文件夹,把led文件夹更改为beep文件夹,改文件夹内部的.c和.h文件更改为beep.c和beep.h文件,如下图所示。 2、打开工程文件 出现弹窗,显示找不到xx文件&#…

PHP开发日志 ━━ 基础知识:四种不同的变量返回方式该如何调用

最近在给框架升级,其中涉及到古早的缓存系统升级,现在准备区分类型为混合、变量和普通文件,那么变量用什么形式存储到缓存才能给后续开发带来便利和通用性呢?于是就涉及到了本文的php基础知识。 好吧,又是一个无用的知…

概率论得学习和整理30: 用EXCEL 描述泊松分布 poisson distribution

目录 1 泊松分布的基本内容 1.1 泊松分布的关键点 1.1.1 属于离散分布 1.1.2 泊松分布的特点:每个子区间内概率相等 , λ就是平均概率 1.2 核心参数 1.3 pmf公式 1.4 期望和方差 2 例1:用EXCEL计算泊松分布的概率 3 比较λ不同值时…

Java中的垃圾收集器

文章目录 1. 理解不同类型的垃圾收集器1.1 Serial 收集器1.2 Parallel (吞吐量) 收集器1.3 CMS (Concurrent Mark-Sweep) 收集器1.4 G1 (Garbage First) 收集器1.5 ZGC 和 Shenandoah GC1.6 Epsilon GC1.7 ParNew 收集器1.8 Zing (Azul Systems) 2. 优化垃圾收集器的选择和配置…

测试工程师八股文05|功能测试、业务测试

一、基础概念 1、软件测试分类 1️⃣按照软件产生的阶段划分 单元测试:针对程序源代码进行测试【开发自测】集成测试:针对模块之间功能交互进行测试系统测试:对整个系统(功能、非功能)进行全面测试验收测试&#xff…

图(dfs与bfs)算法2

进度:15/100 原题1: 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 (力扣的图) 原题2: 给定二叉树的根节点 root ,返回所有左叶子之和。 原题3: 给…

《鸿蒙开发-答案之书》字符串占位符格式化

《鸿蒙开发-答案之书》字符串占位符格式化 先在string.json定义: {"name":"message_arrive","value":"We will arrive at %s."}使用,它有两种使用方式: 方式一: Text($r(app.string.…

Redis bitmaps 使用

应用场景: 记录id为 1 的用户,2024年12月签到情况,并统计; 记录 1号签到 zxys-redis:0>setbit 1:202412 1 1 记录 2号签到 zxys-redis:0>setbit 1:202412 2 1 记录 3号未签到 zxys-redis:0>setbit 1:202412 3 0 …

【微服务】SpringBoot 整合Redis Stack 构建本地向量数据库相似性查询

目录 一、前言 二、向量数据库介绍 2.1 什么是向量数据库 2.2 向量数据库特点 2.3 向量数据库使用场景 三、常用的向量数据库解决方案 3.1 Milvus 3.1.1 Milvus是什么 3.1.2 Milvus主要特点 3.2 Faiss 3.2.1 Faiss是什么 3.2.2 Faiss主要特点 3.3 Pinecone 3.3.1 …

【数据库】大二数据库复习范围 (快速版)帮助你快速复习数据库

第一章 1. 信息=数据+语义 2:数据库管理系统(database management system, DBMS) 3. 数据库系统(database system, DBS)由数据库、数据库用户、计算机硬件系统和计算机软件系统等几部分组成 4. 数据模型按应用层次可分为概念模型、逻辑模型和物理模型。 5.每个二维表…

FMIKit-Simulink 常见问题解决方案

将解压后的文件夹添加到 MATLAB 路径中: addpath(fullfile(pwd, FMIKit-Simulink-3.1));初始化 FMIKit: FMIKit.initialize(); 设置求解器rtwsfcnfmi.tlc、或grtfmi.tlc再CtrlB即可。 帮助文档可查看导出FUM和导入FMU。 FMIKit-Simulink-3.1\html\index…

UE UMG 多级弹出菜单踩坑

多级弹出菜单 https://www.bilibili.com/video/BV1ub411J7nA 运行时添加 widget 的方法 create widget 然后 add child 到某个组件,比如 canvas 运行时修改 widget 位置的方法 set widget slot position 用起来没效果 怀疑是因为我没有传入 slot 但是暂时不知…

sunset: midnight

https://www.vulnhub.com/entry/sunset-midnight,517/ 主机发现端口扫描 探测存活主机,8是靶机 nmap -sP 192.168.56.0/24 Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-12-05 16:49 CST Nmap scan report for 192.168.56.1 …

【PyTorch】动态调整学习率 torch.optim.lr_scheduler.StepLR 调度器

文章目录 1. torch.optim.lr_scheduler.StepLR 官方文档详解2. 使用示例2.1 官方提供使用示例2.2 自己写代码测试方法2.2.1 get_last_lr() 方法2.2.2 state_dict() 方法2.2.3 load_state_dict() 保存和加载调度器 3. 思考3.1 为什么需要state_dict()3.2 get_lr() 与 get_last_l…