MySQL 索引(B+树)详解

MySQL 索引(B+树)详解

  • MySQL逻辑架构
  • 对比InnoDB与MyISAM
    • 存储结构
    • 存储空间
    • 可移植性、备份及恢复
    • 事务支持
    • AUTO_INCREMENT
    • 表锁差异
    • 全文索引
    • 表主键
    • 表的具体行数
    • CRUD操作
    • 外键
  • sql优化简介
    • 什么情况下进行sql优化
    • sql语句执行过程
    • sql优化就是优化索引
  • 索引
    • 索引的优势
    • 索引的弊端
    • 索引的分类
    • 创建索引
    • MySQL索引原理 -> `B+树`
      • B+Tree相对于B-Tree有几点不同
  • 聚簇索引与非聚簇索引
    • 聚簇索引
    • 非聚簇索引
  • 如何触发联合索引
    • 对user表建立联合索引username、password
    • 触发联合索引
  • 分析sql的执行计划---explain
    • explan使用简介
      • 用户表
      • 部门表
      • 未触发索引
      • 触发索引
      • 结果分析
    • explain查询结果简介

MySQL逻辑架构

MySQL的存储引擎架构将查询处理与数据的存储/提取相分离,和其他数据库相比,MySQL有点与众不同,主要体现在存储引擎的架构上,这种架构可以根据业务的需求和实际需求选择合适的存储引擎。

下面是MySQL的逻辑架构分层:
在这里插入图片描述

  • 连接层:最上层是一些客户端和连接服务,包含本地sock通信和大多数基于客户端/服务端工具实现的类似于tcp/ip的通信。主要完成一些类似于连接处理、授权认证、及相关的安全方案。在该层上引入了线程池的概念,为通过认证安全接入的客户端提供线程。同样在该层上可以实现基于SSL的安全链接。服务器也会为安全接入的每个客户端验证它所具有的操作权限。
  • 服务层:MySQL的核心服务功能层,该层是MySQL的核心,包括查询缓存,解析器,解析树,预处理器,查询优化器。主要进行查询解析、分析、查询缓存、内置函数、存储过程、触发器、视图等,select操作会先检查是否命中查询缓存,命中则直接返回缓存数据,否则解析查询并创建对应的解析树。
  • 引擎层:存储引擎层,存储引擎真正的负责了MySQL中数据的存储和提取,服务器通过API与存储引擎进行通信。不同的存储引擎具有的功能不同,这样我们可以根据自己的实际需要进行选取。
  • 存储层:数据存储层,主要是将数据存储在运行于裸设备的文件系统之上,并完成与存储引擎的交互。

对比InnoDB与MyISAM

存储结构

MyISAM:每个MyISAM在磁盘上存储成三个文件。分别为:表定义文件、数据文件、索引文件。第一个文件的名字以表的名字开始,扩展名指出文件类型。.frm文件存储表定义。数据文件的扩展名为.MYD (MYData)。索引文件的扩展名是.MYI (MYIndex)。

InnoDB:所有的表都保存在同一个数据文件中(也可能是多个文件,或者是独立的表空间文件),InnoDB表的大小只受限于操作系统文件的大小,一般为2GB。

存储空间

MyISAM: MyISAM支持支持三种不同的存储格式:静态表(默认,但是注意数据末尾不能有空格,会被去掉)、动态表、压缩表。当表在创建之后并导入数据之后,不会再进行修改操作,可以使用压缩表,极大的减少磁盘的空间占用。

InnoDB: 需要更多的内存和存储,它会在主内存中建立其专用的缓冲池用于高速缓冲数据和索引。

可移植性、备份及恢复

MyISAM:数据是以文件的形式存储,所以在跨平台的数据转移中会很方便。在备份和恢复时可单独针对某个表进行操作。

InnoDB:免费的方案可以是拷贝数据文件、备份 binlog,或者用 mysqldump,在数据量达到几十G的时候就相对痛苦了。

事务支持

MyISAM:强调的是性能,每次查询具有原子性,其执行数度比InnoDB类型更快,但是不提供事务支持。

InnoDB:提供事务支持事务,外部键等高级数据库功能。 具有事务(commit)、回滚(rollback)和崩溃修复能力(crash recovery capabilities)的事务安全(transaction-safe (ACID compliant))型表。

AUTO_INCREMENT

MyISAM:可以和其他字段一起建立联合索引。引擎的自动增长列必须是索引,如果是组合索引,自动增长可以不是第一列,他可以根据前面几列进行排序后递增。

InnoDB:InnoDB中必须包含只有该字段的索引。引擎的自动增长列必须是索引,如果是组合索引也必须是组合索引的第一列。

表锁差异

MyISAM: 只支持表级锁,用户在操作myisam表时,select,update,delete,insert语句都会给表自动加锁,如果加锁以后的表满足insert并发的情况下,可以在表的尾部插入新的数据。

InnoDB: 支持事务和行级锁,是innodb的最大特色。行锁大幅度提高了多用户并发操作的新能。但是InnoDB的行锁,只是在WHERE的主键是有效的,非主键的WHERE都会锁全表的。

全文索引

MyISAM:支持 FULLTEXT类型的全文索引

InnoDB:不支持FULLTEXT类型的全文索引,但是innodb可以使用sphinx插件支持全文索引,并且效果更好。

表主键

MyISAM:允许没有任何索引和主键的表存在,索引都是保存行的地址。

InnoDB:如果没有设定主键或者非空唯一索引,就会自动生成一个6字节的主键(用户不可见),数据是主索引的一部分,附加索引保存的是主索引的值。

表的具体行数

MyISAM: 保存有表的总行数,如果select count() from table;会直接取出出该值。

InnoDB: 没有保存表的总行数,如果使用select count(*) from table;就会遍历整个表,消耗相当大,但是在加了wehre条件后,myisam和innodb处理的方式都一样。

CRUD操作

MyISAM:如果执行大量的SELECT,MyISAM是更好的选择。

InnoDB:如果你的数据执行大量的INSERT或UPDATE,出于性能方面的考虑,应该使用InnoDB表。

外键

MyISAM:不支持

InnoDB:支持

sql优化简介

什么情况下进行sql优化

性能低、执行时间太长、等待时间太长、连接查询、索引失效。

sql语句执行过程

  1. 编写过程
select distinct ... from ... join ... on ... where ... group by ... having ... order by ... limit ...
  1. 解析过程
from ... on ... join ... where ... group by ... having ... select distinct ... order by ... limit ...

sql优化就是优化索引

  • 索引相当于书的目录。
  • 索引的数据结构是B+树。

索引

索引的优势

  • 提高查询效率(降低IO使用率)
  • 降低CPU使用率

比如查询order by age desc,因为B+索引树本身就是排好序的,所以再查询如果触发索引,就不用再重新查询了。

索引的弊端

  • 索引本身很大,可以存放在内存或硬盘上,通常存储在硬盘上。
  • 索引不是所有情况都使用,比如①少量数据②频繁变化的字段③很少使用的字段
  • 索引会降低增删改的效率

索引的分类

  • 单值索引
  • 唯一索引
  • 联合索引
  • 主键索引

备注:唯一索引和主键索引唯一的区别:主键索引不能为null

创建索引

alter table user add INDEX `user_index_username_password` (`username`,`password`)

在这里插入图片描述

MySQL索引原理 -> B+树

MySQL索引的底层数据结构是 B+树

B+Tree是在B-Tree基础上的一种优化,使其更适合实现外存储索引结构,InnoDB存储引擎就是用B+Tree实现其索引结构。

B-Tree结构图中每个节点中不仅包含数据的key值,还有data值。而每一个页的存储空间是有限的,如果data数据较大时将会导致每个节点(即一个页)能存储的key的数量很小,当存储的数据量很大时同样会导致B-Tree的深度较大,增大查询时的磁盘I/O次数,进而影响查询效率。在B+Tree中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储key值信息,这样可以大大加大每个节点存储的key值数量,降低B+Tree的高度。

B+Tree相对于B-Tree有几点不同

  • 非叶子节点只存储键值信息。
  • 所有叶子节点之间都有一个链指针。
  • 数据记录都存放在叶子节点中。

由于B+Tree的非叶子节点只存储键值信息,假设每个磁盘块能存储4个键值及指针信息,则变成B+Tree后其结构如下图所示:
在这里插入图片描述
通常在B+Tree上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点,而且所有叶子节点(即数据节点)之间是一种链式环结构。因此可以对B+Tree进行两种查找运算:一种是对于主键的范围查找和分页查找,另一种是从根节点开始,进行随机查找。

可能上面例子中只有22条数据记录,看不出B+Tree的优点,下面做一个推算:

InnoDB存储引擎中页的大小为16KB,一般表的主键类型为INT(占用4个字节)或BIGINT(占用8个字节),指针类型也一般为4或8个字节,也就是说一个页(B+Tree中的一个节点)中大概存储16KB/(8B+8B)=1K个键值。也就是说一个深度为3的B+Tree索引可以维护103 * 10^3 * 10^3 = 10亿 条记录。

实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree的高度一般都在24层。MySQL的InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要13次磁盘I/O操作。

数据库中的B+Tree索引可以分为聚集索引(clustered index)和辅助索引(secondary index)。上面的B+Tree示例图在数据库中的实现即为聚集索引,聚集索引的B+Tree中的叶子节点存放的是整张表的行记录数据。辅助索引与聚集索引的区别在于辅助索引的叶子节点并不包含行记录的全部数据,而是存储相应行数据的聚集索引键,即主键。当通过辅助索引来查询数据时,InnoDB存储引擎会遍历辅助索引找到主键,然后再通过主键在聚集索引中找到完整的行记录数据。

聚簇索引与非聚簇索引

mysql中普遍使用B+Tree做索引,但在实现上又根据聚簇索引和非聚簇索引而不同。

聚簇索引

所谓聚簇索引,就是指主索引文件和数据文件为同一份文件,聚簇索引主要用在Innodb存储引擎中。在该索引实现方式中B+Tree的叶子节点上的data就是数据本身,key为主键,如果是一般索引的话,data便会指向对应的主索引,如下图所示:
在这里插入图片描述
在B+Tree的每个叶子节点增加一个指向相邻叶子节点的指针,就形成了带有顺序访问指针的B+Tree。做这个优化的目的是为了提高区间访问的性能,例如上图中如果要查询key为从18到49的所有数据记录,当找到18后,只需顺着节点和指针顺序遍历就可以一次性访问到所有数据节点,极大提到了区间查询效率。

非聚簇索引

非聚簇索引就是指B+Tree的叶子节点上的data,并不是数据本身,而是数据存放的地址。主索引和辅助索引没啥区别,只是主索引中的key一定得是唯一的。主要用在MyISAM存储引擎中,如下图:
在这里插入图片描述
非聚簇索引比聚簇索引多了一次读取数据的IO操作,所以查找性能上会差。

如何触发联合索引

对user表建立联合索引username、password

在这里插入图片描述

触发联合索引

使用联合索引的全部索引键可触发联合索引
在这里插入图片描述
使用联合索引的全部索引键,但是用or连接的,不可触发联合索引
在这里插入图片描述
单独使用联合索引的左边第一个字段时,可触发联合索引
在这里插入图片描述
单独使用联合索引的其它字段时,不可触发联合索引
在这里插入图片描述

分析sql的执行计划—explain

explain可以模拟sql优化执行sql语句。

explan使用简介

用户表

在这里插入图片描述

部门表

在这里插入图片描述

未触发索引

在这里插入图片描述

触发索引

在这里插入图片描述

结果分析

explain中第一行出现的表是驱动表。

  • 指定了联接条件时,满足查询条件的记录行数少的表为[驱动表]
  • 未指定联接条件时,行数少的表为[驱动表]
  • 对驱动表直接进行排序就会触发索引,对非驱动表进行排序不会触发索引。

explain查询结果简介

  1. id:SELECT识别符。这是SELECT的查询序列号。

  2. select_type:SELECT类型:

    • SIMPLE: 简单SELECT(不使用UNION或子查询)
    • PRIMARY: 最外面的SELECT
    • UNION:UNION中的第二个或后面的SELECT语句
    • DEPENDENT UNION:UNION中的第二个或后面的SELECT语句,取决于外面的查询
    • UNION RESULT:UNION的结果
    • SUBQUERY:子查询中的第一个SELECT
    • DEPENDENT SUBQUERY:子查询中的第一个SELECT,取决于外面的查询
    • DERIVED:导出表的SELECT(FROM子句的子查询)
  3. table:表名

  4. type:联接类型

    • system:表仅有一行(=系统表)。这是const联接类型的一个特例。
    • const:表最多有一个匹配行,它将在查询开始时被读取。因为仅有一行,在这行的列值可被优化器剩余部分认为是常数。const用于用常数值比较PRIMARY KEY或UNIQUE索引的所有部分时。
    • eq_ref:对于每个来自于前面的表的行组合,从该表中读取一行。这可能是最好的联接类型,除了const类型。它用在一个索引的所有部分被联接使用并且索引是UNIQUE或PRIMARY KEY。eq_ref可以用于使用= 操作符比较的带索引的列。比较值可以为常量或一个使用在该表前面所读取的表的列的表达式。
    • ref:对于每个来自于前面的表的行组合,所有有匹配索引值的行将从这张表中读取。如果联接只使用键的最左边的前缀,或如果键不是UNIQUE或PRIMARY KEY(换句话说,如果联接不能基于关键字选择单个行的话),则使用ref。如果使用的键仅仅匹配少量行,该联接类型是不错的。ref可以用于使用=或<=>操作符的带索引的列。
    • ref_or_null:该联接类型如同ref,但是添加了MySQL可以专门搜索包含NULL值的行。在解决子查询中经常使用该联接类型的优化。
    • index_merge:该联接类型表示使用了索引合并优化方法。在这种情况下,key列包含了使用的索引的清单,key_len包含了使用的索引的最长的关键元素。
    • unique_subquery:该类型替换了下面形式的IN子查询的ref:value IN (SELECT primary_key FROMsingle_table WHERE some_expr);unique_subquery是一个索引查找函数,可以完全替换子查询,效率更高。
    • index_subquery:该联接类型类似于unique_subquery。可以替换IN子查询,但只适合下列形式的子查询中的非唯一索引:value IN (SELECT key_column FROM single_table WHERE some_expr)
    • range:只检索给定范围的行,使用一个索引来选择行。key列显示使用了哪个索引。key_len包含所使用索引的最长关键元素。在该类型中ref列为NULL。当使用=、<>、>、>=、<、<=、IS NULL、<=>、BETWEEN或者IN操作符,用常量比较关键字列时,可以使用range
      index:该联接类型与ALL相同,除了只有索引树被扫描。这通常比ALL快,因为索引文件通常比数据文件小。
    • all:对于每个来自于先前的表的行组合,进行完整的表扫描。如果表是第一个没标记const的表,这通常不好,并且通常在它情况下很差。通常可以增加更多的索引而不要使用ALL,使得行能基于前面的表中的常数值或列值被检索出。
  5. possible_keys:possible_keys列指出MySQL能使用哪个索引在该表中找到行。注意,该列完全独立于EXPLAIN输出所示的表的次序。这意味着在possible_keys中的某些键实际上不能按生成的表次序使用。

  6. key:key列显示MySQL实际决定使用的键(索引)。如果没有选择索引,键是NULL。要想强制MySQL使用或忽视possible_keys列中的索引,在查询中使用FORCE INDEX、USE INDEX或者IGNORE INDEX。

  7. key_len:key_len列显示MySQL决定使用的键长度。如果键是NULL,则长度为NULL。注意通过key_len值我们可以确定MySQL将实际使用一个多部关键字的几个部分。

  8. ref:ref列显示使用哪个列或常数与key一起从表中选择行。

  9. rows:rows列显示MySQL认为它执行查询时必须检查的行数。

  10. Extra:该列包含MySQL解决查询的详细信息。

    • Distinct:MySQL发现第1个匹配行后,停止为当前的行组合搜索更多的行。
    • Not exists:MySQL能够对查询进行LEFT JOIN优化,发现1个匹配LEFT JOIN标准的行后,不再为前面的的行组合在该表内检查更多的行。
    • range checked for each record (index map: #):MySQL没有发现好的可以使用的索引,但发现如果来自前面的表的列值已知,可能部分索引可以使用。对前面的表的每个行组合,MySQL检查是否可以使用range或index_merge访问方法来索取行。
    • Using filesort:MySQL需要额外的一次传递,以找出如何按排序顺序检索行。通过根据联接类型浏览所有行并为所有匹配WHERE子句的行保存排序关键字和行的指针来完成排序。然后关键字被排序,并按排序顺序检索行。
    • Using index:从只使用索引树中的信息而不需要进一步搜索读取实际的行来检索表中的列信息。当查询只使用作为单一索引一部分的列时,可以使用该策略。
    • Using temporary:为了解决查询,MySQL需要创建一个临时表来容纳结果。典型情况如查询包含可以按不同情况列出列的GROUP BY和ORDER BY子句时。
    • Using where:WHERE子句用于限制哪一个行匹配下一个表或发送到客户。除非你专门从表中索取或检查所有行,如果Extra值不为Using where并且表联接类型为ALL或index,查询可能会有一些错误。
    • Using sort_union(…), Using union(…), Using intersect(…):这些函数说明如何为index_merge联接类型合并索引扫描。
    • Using index for group-by:类似于访问表的Using index方式,Using index for group-by表示MySQL发现了一个索引,可以用来查询GROUP BY或DISTINCT查询的所有列,而不要额外搜索硬盘访问实际的表。并且,按最有效的方式使用索引,以便对于每个组,只读取少量索引条目。

通过相乘EXPLAIN输出的rows列的所有值,你能得到一个关于一个联接如何的提示。这应该粗略地告诉你MySQL必须检查多少行以执行查询。当你使用max_join_size变量限制查询时,也用这个乘积来确定执行哪个多表SELECT语句。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/62398.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL生产环境备份脚本

全量备份脚本&#xff0c;其中BakDir&#xff0c;ZlbakDir&#xff0c;LogFile需要自己创建 #!/bin/bash export LANGen_US.UTF-8# 指定备份目录 BakDir/root/beifen/data/mysqlbak/data/allbak # 指定增量备份目录 ZlbakDir/root/beifen/data/mysqlbak/data/zlbak # 备份日志…

HTTP multipart/form-data 请求

序言 最近在写项目的过程中有一个需求是利用 HTTP 协议传输图片和视频&#xff0c;经过查询方法相应的方法发现使用 multipart/form-data 的方式&#xff0c;这是最常见处理二进制文件的表单编码类型。  学习了一下午&#xff0c;现在总结一下使用的方法和相关的知识点&#x…

Linux下redis环境的搭建

1.redis的下载 redis官网下载redis的linux压缩包&#xff0c;官网地址:Redis下载 网盘链接&#xff1a; 通过网盘分享的文件&#xff1a;redis-5.0.4.tar.gz 链接: https://pan.baidu.com/s/1cz3ifYrDcHWZXmT1fNzBrQ?pwdehgj 提取码: ehgj 2.redis安装与配置 将包上传到 /…

day09性能测试(1)——纯理论

document.querySelector(video).playbackRate 2.5 //可以写任何数字 【没有所谓的运气&#x1f36c;&#xff0c;只有绝对的努力✊】 目录 1、性能测试概念 2、功能测试 vs 性能测试 3、小结&#xff08;习题&#xff09; 4、性能测试的策略 4.1 基准测试 4.2 负载测试 …

内部类和Object类

匿名对象 格式&#xff1a; 匿名对象只可以调用一次成员 &#xff1a; 1. 调用一次成员变量 &#xff1a; new 类名(实参).成员变量名&#xff1b; 2.调用一次成员方法&#xff1a; new 类名(实参).成员方法名(实参)&#xff1b; 匿名对象存在的必要&#xff1a;为了提高…

Python的3D可视化库vedo 1-3 (visual模块)网格对象的线和面、图片的属性

文章目录 4 MeshVisual4.1 线条4.1.1 线宽和颜色4.1.2 线条渲染为管 4.2 曲面4.2.1 物体展示为实心或框架4.2.2 曲面插值4.2.3 面的剔除 4.3 纹理4.4 相机跟随 5 ImageVisual5.1 图片属性5.1.1 占用内存大小5.1.2 颜色标量范围 5.2 渲染属性5.2.1 透明度5.2.2 亮度5.2.3 对比度…

基于JAVA的旅游网站系统设计

摘要 随着信息技术和网络技术的迅速发展&#xff0c;人们的生活质量和观念也在发生着改变&#xff0c;各地争相发展旅游业&#xff0c;传统的 旅游社已经无法满足人们的需求&#xff0c;旅游网站将突破传统在时间和地域的限制&#xff0c;成为方便、快捷、安全、可靠的旅游 方…

H5游戏出海如何获得更多增长机会?

海外H5小游戏的崛起给了国内众多中小厂商出海发展的机会&#xff0c;开发者如何在海外市场获得更多的增长机会&#xff1f;#APP出海# H5游戏如何在海外获得核心用户&#xff1f; HTML5游戏的开发与运营者们首先可以利用量多质高的HTML5游戏&#xff0c;维持海外用户粘性&…

国际荐酒师Peter助力第六届地博会,推动地理标志产品国际化发展

国际荐酒师Peter Lisicky助力第六届知交会暨地博会&#xff0c;推动地理标志产品国际化发展 第六届粤港澳大湾区知识产权交易博览会暨国际地理标志产品交易博览会于2024年12月9日至11日在中新广州知识城盛大举行&#xff0c;吸引了全球众多行业专家、企业代表及相关机构齐聚一…

2024 亚马逊云科技re:Invent:Werner Vogels架构哲学,大道至简 六大经验助力架构优化

在2024亚马逊云科技re:Invent全球大会第四天的主题演讲中&#xff0c;亚马逊副总裁兼CTO Dr.Werner Vogels分享了 The Way of Simplexity&#xff0c;繁简之道&#xff0c;浓缩了Werner在亚马逊20年构建架构的经验。 Werner表示&#xff0c;复杂性总是会“悄无声息”地渗透进来…

ThinkPHP框架审计--基础

基础入门 搭建好thinkphp 查看版本方法&#xff0c;全局搜version 根据开发手册可以大致了解该框架的路由 例如访问url http://127.0.0.1:8094/index.php/index/index/index 对应代码位置 例如在代码下面添加新方法 那么访问这个方法的url就是 http://127.0.0.1:8094/index.…

如何在vue中使用ECharts

一. 打开ECharts官网,点击快速入门 下面是ECharts官网的链接 https://echarts.apache.org/ 二.在vue中使用 1.首先先引入Echarts js文件 如下图&#xff0c;下面的第一张图片是官网的实现&#xff0c;第二章图片是我根据官网的实现 2.给ECharts 创建一个DOM容器 3. 使用ec…

网络原理之 IP 协议

目录 1. IP 协议报文格式 2. 网段划分 3. 地址管理 1) 动态分配 2) NAT 机制 (网络地址转换) 3) IPv6 4. 路由选择 1. IP 协议报文格式 IP 协议是网络层的重点协议。 网络层要做的事情&#xff0c;主要就是两方面&#xff1a; 1) 地址管理 制定一系列的规则&#xff…

HyperMesh CFD功能详解:后处理功能Part 2

Clips Clips 按钮包含两个工具。Box Clip用于空间上的裁剪&#xff0c;Scalar Clip可以根据物理量的范围裁剪。 示例&#xff1a;Box Clips 裁剪 示例&#xff1a;Scalar Clips 裁剪 通过裁剪&#xff0c;仅显示density范围是10~20的等值面 示例&#xff1a;显示效果控制 部分透…

Java项目实战II基于微信小程序的跑腿系统(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、核心代码 五、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 在快节奏的现代生活中&…

【机器学习与数据挖掘实战案例01】基于支持向量回归的市财政收入分析

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈机器学习与数据挖掘实战 ⌋ ⌋ ⌋ 机器学习是人工智能的一个分支&#xff0c;专注于让计算机系统通过数据学习和改进。它利用统计和计算方法&#xff0c;使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数…

JavaEE 【知识改变命运】03 多线程(3)

文章目录 多线程带来的风险-线程安全线程不安全的举例分析产出线程安全的原因&#xff1a;1.线程是抢占式的2. 多线程修改同一个变量&#xff08;程序的要求&#xff09;3. 原子性4. 内存可见性5. 指令重排序 总结线程安全问题产生的原因解决线程安全问题1. synchronized关键字…

【力扣】409.最长回文串

问题描述 思路解析 因为同时包含大小写字母&#xff0c;直接创建个ASCII表大小的桶来标记又因为是要回文子串&#xff0c;所以偶数个数的一定可以那么同时&#xff0c;对于出现奇数次数的&#xff0c;我没需要他们的次数-1&#xff0c;变为偶数&#xff0c;并且可以标记出现过…

计算机视觉在科学研究(数字化)中的实际应用

计算机视觉是一种利用计算机技术来解析和理解图像和视频的方法。.随着计算机技术的不断发展&#xff0c;计算机视觉被广泛应用于科学研究领域&#xff0c;为科学家提供了无限的可能。 一、生命科学领域 在生命科学领域&#xff0c;计算机视觉被广泛用于图像识别、分类和测量等…

springboot381银行客户管理系统(论文+源码)_kaic

摘 要 伴随着信息技术与互联网技术的不断发展&#xff0c;人们进到了一个新的信息化时代&#xff0c;传统管理技术性没法高效率、容易地管理信息内容。为了实现时代的发展必须&#xff0c;提升管理高效率&#xff0c;各种各样管理管理体系应时而生&#xff0c;各个领域陆续进到…