SpringBoot教程(三十二) SpringBoot集成Skywalking链路跟踪

SpringBoot教程(三十二) | SpringBoot集成Skywalking链路跟踪
  • 一、Skywalking是什么?
  • 二、Skywalking与JDK版本的对应关系
  • 三、Skywalking下载
  • 四、Skywalking 数据存储
  • 五、Skywalking 的启动
  • 六、部署探针
    • 前提: Agents 8.9.0 放入 项目工程
    • 方式一:IDEA 部署探针
    • 方式二:Java 命令行启动方式
    • 方式三:编写sh脚本启动(linux环境)
  • 七、Springboot 的启动
    • IDEA 部署探针方式启动
    • Skywalking 进行日志配置
    • 实现入参、返参都可查看
      • 方式一:通过 Agent 配置实现 (有缺点)
      • 方式二:通过 trace 和 Filter 实现
      • 方式三:通过 trace 和 Aop 去实现

一、Skywalking是什么?

SkyWalking是一个开源的、用于观测分布式系统(特别是微服务、云原生和容器化应用)的平台。
它提供了对分布式系统的追踪、监控和诊断能力。

二、Skywalking与JDK版本的对应关系

SkyWalking 8.x版本要求Java版本至少为8(即JDK 1.8),
SkyWalking 9.x版本则要求Java版本至少为11(即JDK 11)

所以选择的时候需要注意一下JDK版本。

三、Skywalking下载

Skywalking 官网下载地址 https://skywalking.apache.org/downloads/
在这里插入图片描述

  • 其他的版本的 APM 地址
    https://archive.apache.org/dist/skywalking/

  • 其他的java 版本的 Agents 地址
    https://archive.apache.org/dist/skywalking/java-agent/

注意点:
7.x及以下版本 APM 包里面有包括 Agents,但是8.x的就发现被分开了,所以8.x的及以上的 就需要 Agents 也得下载

目前该文选择 下载 APM 8.9.1 和 Agents 8.9.0 后解压
在这里插入图片描述

四、Skywalking 数据存储

Skywalking 存在多种数据存储

  1. h2(默认的存储方式,重启后数据会丢失)
  2. Elasticsearch (最常用的数据存储方式)
  3. MySQL
  4. TiDB

相关文件OAP 配置文件(config/application.yml)
我只截取了关于设置存储方式的部分

storage:selector: ${SW_STORAGE:h2}elasticsearch:namespace: ${SW_NAMESPACE:""}clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:localhost:9200}protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}connectTimeout: ${SW_STORAGE_ES_CONNECT_TIMEOUT:500}socketTimeout: ${SW_STORAGE_ES_SOCKET_TIMEOUT:30000}numHttpClientThread: ${SW_STORAGE_ES_NUM_HTTP_CLIENT_THREAD:0}user: ${SW_ES_USER:""}password: ${SW_ES_PASSWORD:""}trustStorePath: ${SW_STORAGE_ES_SSL_JKS_PATH:""}trustStorePass: ${SW_STORAGE_ES_SSL_JKS_PASS:""}secretsManagementFile: ${SW_ES_SECRETS_MANAGEMENT_FILE:""} # Secrets management file in the properties format includes the username, password, which are managed by 3rd party tool.dayStep: ${SW_STORAGE_DAY_STEP:1} # Represent the number of days in the one minute/hour/day index.indexShardsNumber: ${SW_STORAGE_ES_INDEX_SHARDS_NUMBER:1} # Shard number of new indexesindexReplicasNumber: ${SW_STORAGE_ES_INDEX_REPLICAS_NUMBER:1} # Replicas number of new indexes# Super data set has been defined in the codes, such as trace segments.The following 3 config would be improve es performance when storage super size data in es.superDatasetDayStep: ${SW_SUPERDATASET_STORAGE_DAY_STEP:-1} # Represent the number of days in the super size dataset record index, the default value is the same as dayStep when the value is less than 0superDatasetIndexShardsFactor: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_SHARDS_FACTOR:5} #  This factor provides more shards for the super data set, shards number = indexShardsNumber * superDatasetIndexShardsFactor. Also, this factor effects Zipkin and Jaeger traces.superDatasetIndexReplicasNumber: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_REPLICAS_NUMBER:0} # Represent the replicas number in the super size dataset record index, the default value is 0.indexTemplateOrder: ${SW_STORAGE_ES_INDEX_TEMPLATE_ORDER:0} # the order of index templatebulkActions: ${SW_STORAGE_ES_BULK_ACTIONS:5000} # Execute the async bulk record data every ${SW_STORAGE_ES_BULK_ACTIONS} requests# flush the bulk every 10 seconds whatever the number of requests# INT(flushInterval * 2/3) would be used for index refresh period.flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:15}concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2} # the number of concurrent requestsresultWindowMaxSize: ${SW_STORAGE_ES_QUERY_MAX_WINDOW_SIZE:10000}metadataQueryMaxSize: ${SW_STORAGE_ES_QUERY_MAX_SIZE:5000}segmentQueryMaxSize: ${SW_STORAGE_ES_QUERY_SEGMENT_SIZE:200}profileTaskQueryMaxSize: ${SW_STORAGE_ES_QUERY_PROFILE_TASK_SIZE:200}oapAnalyzer: ${SW_STORAGE_ES_OAP_ANALYZER:"{"analyzer":{"oap_analyzer":{"type":"stop"}}}"} # the oap analyzer.oapLogAnalyzer: ${SW_STORAGE_ES_OAP_LOG_ANALYZER:"{"analyzer":{"oap_log_analyzer":{"type":"standard"}}}"} # the oap log analyzer. It could be customized by the ES analyzer configuration to support more language log formats, such as Chinese log, Japanese log and etc.advanced: ${SW_STORAGE_ES_ADVANCED:""}h2:driver: ${SW_STORAGE_H2_DRIVER:org.h2.jdbcx.JdbcDataSource}url: ${SW_STORAGE_H2_URL:jdbc:h2:mem:skywalking-oap-db;DB_CLOSE_DELAY=-1}user: ${SW_STORAGE_H2_USER:sa}metadataQueryMaxSize: ${SW_STORAGE_H2_QUERY_MAX_SIZE:5000}maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:100}asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:1}mysql:properties:jdbcUrl: ${SW_JDBC_URL:"jdbc:mysql://localhost:3306/swtest?rewriteBatchedStatements=true"}dataSource.user: ${SW_DATA_SOURCE_USER:root}dataSource.password: ${SW_DATA_SOURCE_PASSWORD:root@1234}dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true}dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250}dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048}dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true}metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000}maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:2000}asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:4}tidb:properties:jdbcUrl: ${SW_JDBC_URL:"jdbc:mysql://localhost:4000/tidbswtest?rewriteBatchedStatements=true"}dataSource.user: ${SW_DATA_SOURCE_USER:root}dataSource.password: ${SW_DATA_SOURCE_PASSWORD:""}dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true}dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250}dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048}dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true}dataSource.useAffectedRows: ${SW_DATA_SOURCE_USE_AFFECTED_ROWS:true}metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000}maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:2000}asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:4}influxdb:# InfluxDB configurationurl: ${SW_STORAGE_INFLUXDB_URL:http://localhost:8086}user: ${SW_STORAGE_INFLUXDB_USER:root}password: ${SW_STORAGE_INFLUXDB_PASSWORD:}database: ${SW_STORAGE_INFLUXDB_DATABASE:skywalking}actions: ${SW_STORAGE_INFLUXDB_ACTIONS:1000} # the number of actions to collectduration: ${SW_STORAGE_INFLUXDB_DURATION:1000} # the time to wait at most (milliseconds)batchEnabled: ${SW_STORAGE_INFLUXDB_BATCH_ENABLED:true}fetchTaskLogMaxSize: ${SW_STORAGE_INFLUXDB_FETCH_TASK_LOG_MAX_SIZE:5000} # the max number of fetch task log in a requestconnectionResponseFormat: ${SW_STORAGE_INFLUXDB_CONNECTION_RESPONSE_FORMAT:MSGPACK} # the response format of connection to influxDB, cannot be anything but MSGPACK or JSON.postgresql:properties:jdbcUrl: ${SW_JDBC_URL:"jdbc:postgresql://localhost:5432/skywalking"}dataSource.user: ${SW_DATA_SOURCE_USER:postgres}dataSource.password: ${SW_DATA_SOURCE_PASSWORD:123456}dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true}dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250}dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048}dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true}metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000}maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:2000}asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:4}zipkin-elasticsearch:namespace: ${SW_NAMESPACE:""}clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:localhost:9200}protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}trustStorePath: ${SW_STORAGE_ES_SSL_JKS_PATH:""}trustStorePass: ${SW_STORAGE_ES_SSL_JKS_PASS:""}dayStep: ${SW_STORAGE_DAY_STEP:1} # Represent the number of days in the one minute/hour/day index.indexShardsNumber: ${SW_STORAGE_ES_INDEX_SHARDS_NUMBER:1} # Shard number of new indexesindexReplicasNumber: ${SW_STORAGE_ES_INDEX_REPLICAS_NUMBER:1} # Replicas number of new indexes# Super data set has been defined in the codes, such as trace segments.The following 3 config would be improve es performance when storage super size data in es.superDatasetDayStep: ${SW_SUPERDATASET_STORAGE_DAY_STEP:-1} # Represent the number of days in the super size dataset record index, the default value is the same as dayStep when the value is less than 0superDatasetIndexShardsFactor: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_SHARDS_FACTOR:5} #  This factor provides more shards for the super data set, shards number = indexShardsNumber * superDatasetIndexShardsFactor. Also, this factor effects Zipkin and Jaeger traces.superDatasetIndexReplicasNumber: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_REPLICAS_NUMBER:0} # Represent the replicas number in the super size dataset record index, the default value is 0.user: ${SW_ES_USER:""}password: ${SW_ES_PASSWORD:""}secretsManagementFile: ${SW_ES_SECRETS_MANAGEMENT_FILE:""} # Secrets management file in the properties format includes the username, password, which are managed by 3rd party tool.bulkActions: ${SW_STORAGE_ES_BULK_ACTIONS:5000} # Execute the async bulk record data every ${SW_STORAGE_ES_BULK_ACTIONS} requests# flush the bulk every 10 seconds whatever the number of requests# INT(flushInterval * 2/3) would be used for index refresh period.flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:15}concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2} # the number of concurrent requestsresultWindowMaxSize: ${SW_STORAGE_ES_QUERY_MAX_WINDOW_SIZE:10000}metadataQueryMaxSize: ${SW_STORAGE_ES_QUERY_MAX_SIZE:5000}segmentQueryMaxSize: ${SW_STORAGE_ES_QUERY_SEGMENT_SIZE:200}profileTaskQueryMaxSize: ${SW_STORAGE_ES_QUERY_PROFILE_TASK_SIZE:200}oapAnalyzer: ${SW_STORAGE_ES_OAP_ANALYZER:"{"analyzer":{"oap_analyzer":{"type":"stop"}}}"} # the oap analyzer.oapLogAnalyzer: ${SW_STORAGE_ES_OAP_LOG_ANALYZER:"{"analyzer":{"oap_log_analyzer":{"type":"standard"}}}"} # the oap log analyzer. It could be customized by the ES analyzer configuration to support more language log formats, such as Chinese log, Japanese log and etc.advanced: ${SW_STORAGE_ES_ADVANCED:""}iotdb:host: ${SW_STORAGE_IOTDB_HOST:127.0.0.1}rpcPort: ${SW_STORAGE_IOTDB_RPC_PORT:6667}username: ${SW_STORAGE_IOTDB_USERNAME:root}password: ${SW_STORAGE_IOTDB_PASSWORD:root}storageGroup: ${SW_STORAGE_IOTDB_STORAGE_GROUP:root.skywalking}sessionPoolSize: ${SW_STORAGE_IOTDB_SESSIONPOOL_SIZE:16}fetchTaskLogMaxSize: ${SW_STORAGE_IOTDB_FETCH_TASK_LOG_MAX_SIZE:1000} # the max number of fetch task log in a request

五、Skywalking 的启动

进入 D:apache-skywalking-apm-8.9.1apache-skywalking-apm-binin ,双击运行 startup.bat(用管理员方式启动),会开启两个命令行窗口。

  • (1)Skywalking-Collector:追踪信息收集器,通过 gRPC/Http 收集客户端的采集信息 。Http默认端口 12800,gRPC默认端口 11800。(如需要修改,可前往 apache-skywalking-apm-binconfigapplicaiton.yml 进行修改)
  • (2)Skywalking-Webapp:管理平台页面 默认端口 8080 (如需要修改,可前往 apache-skywalking-apm-binwebappwebapp.yml 进行修改)

启动图如下:
在这里插入图片描述

接着浏览器Skywalking访问:http://localhost:8080/
这个右边有个自动刷新的按钮,一定要启动起来
不然到时候,springboot工程启动以后,你以为没有连接成功(F5刷新页面是没有用的)
在这里插入图片描述

六、部署探针

前提: Agents 8.9.0 放入 项目工程

也不说放其他位置不好,不过放到项目里面更好一点,后面你就能感受到便利了

在这里插入图片描述

方式一:IDEA 部署探针

修改启动类的 VM options(虚拟机选项)配置
在这里插入图片描述

在这里插入图片描述
配置的jvm参数如下:

-javaagent:D:ideaObjectreactBootspringboot-fullsrcmainskywalking-agentskywalking-agent.jar
-Dskywalking.agent.service_name=woqu-ndy
-Dskywalking.collector.backend_service=127.0.0.1:11800
  • javaagent: 表示 skywalking‐agent.jar的本地磁盘的路径
    (我这边是放到项目里面了)
    -Dskywalking.agent.service_name:表示在skywalking上显示的服务名
    -Dskywalking.collector.backend_service:表示skywalking的collector服务的IP及端口
  • 注意:-Dskywalking.collector.backend_service 可以指定远程地址, 但是 javaagent 必须绑定你本机物理路径的 skywalking-agent.jar

方式二:Java 命令行启动方式

java -javaagent:D:ideaObjectreactBootspringboot-fullsrcmainskywalking-agentskywalking-agent.jar=-Dskywalking.agent.service_name=service-myapp,-Dskywalking.collector.backend_service=localhost:11800 -jar service-myapp.jar

方式三:编写sh脚本启动(linux环境)

#!/bin/bash  # 设置 SkyWalking Agent 的路径  
AGENT_PATH="/home/yourusername/Desktop/apache-skywalking-apm-6.6.0/apache-skywalking-apm-bin/agent"  # 设置 Java 应用的 JAR 文件路径  
JAR_PATH="/path/to/your/service-myapp.jar"  # 设置 SkyWalking 服务名称和 Collector 后端服务地址  
SERVICE_NAME="service-myapp"  
COLLECTOR_BACKEND_SERVICE="localhost:11800"  # 构造 Java Agent 参数  
JAVA_AGENT="-javaagent:$AGENT_PATH/skywalking-agent.jar   -Dskywalking.agent.service_name=$SERVICE_NAME   -Dskywalking.collector.backend_service=$COLLECTOR_BACKEND_SERVICE"  # 启动 Java 应用  
java $JAVA_AGENT -jar $JAR_PATH

七、Springboot 的启动

IDEA 部署探针方式启动

启动后,控制台日志输出开头出现了以下的记录,就表示连接上Skywalking了
在这里插入图片描述
再看 Skywalking(http://localhost:8080/) 页面那边,你就会发现有个这个图(表示连接上了)
在这里插入图片描述
我们再请求一下 Controller 的接口,就会发现捕获了相关接口记录
(但是目前,还是没有接口具体详细的日志入参或者出参的)
在这里插入图片描述
在这里插入图片描述

Skywalking 进行日志配置

为log日志增加 skywalking的 traceId(追踪ID)。便于排查

首先引入maven依赖

 <!-- SkyWalking 的日志工具包 -->
<dependency><groupId>org.apache.skywalking</groupId><artifactId>apm-toolkit-logback-1.x</artifactId><version>9.0.0</version>
</dependency>

接着在 resources文件夹下创建 logback-spring.xml文件

<?xml version="1.0" encoding="UTF-8"?>
<configuration debug="false"><!--定义日志文件的存储地址 勿在 LogBack 的配置中使用相对路径--><property name="LOG_HOME" value="D:/logs/" ></property><!-- 彩色日志 --><conversionRule conversionWord="clr" converterClass="org.springframework.boot.logging.logback.ColorConverter" /><!--控制台日志, 控制台输出 --><appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender"><encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder"><layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout"><!--格式化输出:%d表示日期,%thread表示线程名,%-5level:级别从左显示5个字符宽度%msg:日志消息,%n是换行符--><pattern>%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} [%X{tid}] %clr([%-10.10thread]){faint} %clr(%-5level) %clr(%-50.50logger{50}:%-3L){cyan} %clr(-){faint} %msg%n</pattern></layout></encoder></appender><!--文件日志, 按照每天生成日志文件 (只能是 由 Logger 或者 LoggerFactory 记录的日志消息哦)--><!--以下关于 日志文件的pattern 需要去掉颜色,防止出现 ANSI转义序列--><appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender"><rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy"><!--日志文件输出的文件名--><FileNamePattern>${LOG_HOME}/%d{yyyy-MM-dd}/pro.log</FileNamePattern><!--日志文件保留天数--><MaxHistory>30</MaxHistory></rollingPolicy><encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder"><layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout"><!--格式化输出:%d表示日期,%thread表示线程名,%-5level:级别从左显示5个字符宽度%msg:日志消息,%n是换行符--><!--            <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>--><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%X{tid}] [%-10.10thread] %-5level %-50.50logger{50}:%-3L - %msg%n</pattern></layout></encoder><!--日志文件最大的大小--><triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy"><MaxFileSize>10MB</MaxFileSize></triggeringPolicy></appender><!--skywalking grpc 日志收集--><appender name="grpc" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender"><encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder"><layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout"><Pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%X{tid}] [%thread] %-5level %logger{36} -%msg%n</Pattern></layout></encoder></appender><!-- 日志输出级别 --><root level="INFO"><appender-ref ref="STDOUT" ></appender-ref><appender-ref ref="FILE" ></appender-ref><appender-ref ref="grpc"/></root>
</configuration>

请求接口就可以发现TID的输出
(在这里是882c67dc859046c398fbfc5725df9de0.109.17288962842340001)
在这里插入图片描述

然后把它放到 追踪 栏目的追踪id ,可以查到记录

在这里插入图片描述
然后把它放到 日志 栏目的追踪id ,可以查到记录
在这里插入图片描述

实现入参、返参都可查看

方式一:通过 Agent 配置实现 (有缺点)

首先,你需要确认SkyWalking的Agent配置。
SkyWalking的Agent在启动时会读取配置文件,通常是agent.config。
默认情况下,请求参数的采集是关闭的,你需要手动开启。
具体步骤如下:
在你的SkyWalking Agent配置文件agent.config中,找到plugin部分,确保以下配置项设置为true:

plugin.tomcat.collect_http_params=${SW_PLUGIN_TOMCAT_COLLECT_HTTP_PARAMS:true}
plugin.springmvc.collect_http_params=${SW_PLUGIN_SPRINGMVC_COLLECT_HTTP_PARAMS:true}
plugin.httpclient.collect_http_params=${SW_PLUGIN_HTTPCLIENT_COLLECT_HTTP_PARAMS:true}

缺点:可是以上设置,只能开启get请求的入参采集,post无法获取到,这个方式不怎么好

方式二:通过 trace 和 Filter 实现

一、引入追踪工具包

<!-- SkyWalking 追踪工具包 -->
<dependency><groupId>org.apache.skywalking</groupId><artifactId>apm-toolkit-trace</artifactId><version>9.0.0</version>
</dependency>

二、使用 HttpFilter 和 ContentCachingRequestWrapper

知识小贴士:为什么不用HttpServletRequest?
如果直接把HttpServletRequest中的InputStream读取后输出日志,会导致后续业务逻辑读取不到InputStream中的内容,因为流只能读取一次。

package com.example.springbootfull.quartztest.Filter;import lombok.extern.slf4j.Slf4j;
import org.apache.skywalking.apm.toolkit.trace.ActiveSpan;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;
import org.springframework.web.util.ContentCachingRequestWrapper;
import org.springframework.web.util.ContentCachingResponseWrapper;import javax.servlet.FilterChain;
import javax.servlet.ServletException;
import javax.servlet.http.HttpFilter;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Set;
import java.util.stream.Collectors;@Slf4j
@Component
public class ApmHttpInfo extends HttpFilter {//被忽略的头部信息  private static final Set<String> IGNORED_HEADERS;static {Set<String> ignoredHeaders = new HashSet<>();ignoredHeaders.addAll(java.util.Arrays.asList("Content-Type","User-Agent","Accept","Cache-Control","Postman-Token","Host","Accept-Encoding","Connection","Content-Length").stream().map(String::toUpperCase).collect(Collectors.toList()));IGNORED_HEADERS = ignoredHeaders;}@Overridepublic void doFilter(HttpServletRequest request, HttpServletResponse response, FilterChain filterChain) throws IOException, ServletException {ContentCachingRequestWrapper requestWrapper = new ContentCachingRequestWrapper(request);ContentCachingResponseWrapper responseWrapper = new ContentCachingResponseWrapper(response);try {filterChain.doFilter(requestWrapper, responseWrapper);} finally {try {//构造请求信息: 比如 curl -X GET http://localhost:18080/getPerson?id=1 -H 'token: me-token' -d '{ "name": "hello" }'//构造请求的方法&URL&参数StringBuilder sb = new StringBuilder("curl").append(" -X ").append(request.getMethod()).append(" ").append(request.getRequestURL().toString());if (StringUtils.hasLength(request.getQueryString())) {sb.append("?").append(request.getQueryString());}//构造headerEnumeration<String> headerNames = request.getHeaderNames();while (headerNames.hasMoreElements()) {String headerName = headerNames.nextElement();if (!IGNORED_HEADERS.contains(headerName.toUpperCase())) {sb.append(" -H '").append(headerName).append(": ").append(request.getHeader(headerName)).append("'");}}//获取bodyString body = new String(requestWrapper.getContentAsByteArray(), StandardCharsets.UTF_8);if (StringUtils.hasLength(body)) {sb.append(" -d '").append(body).append("'");}//输出到inputActiveSpan.tag("input", sb.toString());//获取返回值bodyString responseBody = new String(responseWrapper.getContentAsByteArray(), StandardCharsets.UTF_8);//输出到outputActiveSpan.tag("output", responseBody);} catch (Exception e) {log.warn("fail to build http log", e);} finally {//这一行必须添加,否则就一直不返回responseWrapper.copyBodyToResponse();}}}
}

效果如下(get请求):
在这里插入图片描述
效果如下(post请求):
在这里插入图片描述

方式三:通过 trace 和 Aop 去实现

在此就不细说了,这个也是一种方案

参考文章
【1】skywalking环境搭建(windows)
【2】windows下安装skywalking 9.2
【3】skywalking9.1结合logback配置日志收集
【4】SpringBoot集成Skywalking日志收集
【5】skywalking展示http请求和响应

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/62266.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

flask创建templates目录存放html文件

首先&#xff0c;创建flask项目&#xff0c;在pycharm中File --> New Project&#xff0c;选择Flask项目。 然后&#xff0c;在某一目录下&#xff0c;新建名为templates的文件夹&#xff0c;这时会是一个普通的文件夹。 然后右击templates文件夹&#xff0c;选择Unmark as …

Java进阶(注解,设计模式,对象克隆)

Java进阶(注解&#xff0c;设计模式&#xff0c;对象克隆) 一. 注解 1.1 什么是注解 java中注解(Annotation)&#xff0c;又称java标注&#xff0c;是一种特殊的注释 可以添加在包&#xff0c;类&#xff0c;成员变量&#xff0c;方法&#xff0c;参数等内容上 注解会随同…

部署loki,grafana 以及springcloud用法举例

文章目录 场景docker 部署grafanadocker-compose部署loki维护配置文件 local-config.yaml维护docker-compose.yml配置启动 grafana 添加loki数据源springcloud用法举例查看loki的explore,查看日志 场景 小公司缺少运维岗位&#xff0c;需要研发自己部署日志系统&#xff0c;elk…

keil报错---connection refused due to device mismatch

解决办法如下&#xff1a; 记得改成1 把Enable取消

第三节、电机定速转动【51单片机-TB6600驱动器-步进电机教程】

摘要&#xff1a;本节介绍用定时器定时的方式&#xff0c;精准控制脉冲时间&#xff0c;从而控制步进电机速度 一、计算过程 1.1 电机每一步的角速度等于走这一步所花费的时间&#xff0c;走一步角度等于步距角&#xff0c;走一步的时间等于一个脉冲的时间 w s t e p t … ……

vue中pdf.js的使用,包括pdf显示,跳转指定页面,高亮关键词

目录 一、下载pdf.js 二、引入到本地的项目中 三、实现预览pdf 四、跳转到指定页面 五、利用pdf里面的find查找关键词 六、修改页面大小为实际大小 一、下载pdf.js https://github.com/mozilla/pdf.js 里面有很多的版本&#xff0c; 高版本的可能浏览器不兼容或者还要考…

OD B卷【连续字母长度】

题目 给定一个字符串&#xff0c;只包含大写字母&#xff0c;求在包含同一字母的子串中&#xff0c;长度第k长的子串的长度&#xff0c;相同字母只取最长的那个子串。 输入描述&#xff1a; 第一行输入一个子串&#xff08;长【1,100】&#xff09;&#xff0c;只包含大写字母…

python中的 Pydantic 框架介绍

Pydantic 框架介绍 Pydantic 是一个用于数据验证和设置管理的 Python 库。它主要通过数据模型类的定义来处理 JSON 数据、解析请求和响应数据&#xff0c;并提供自动化的验证和转换。Pydantic 主要用于处理 Python 类型的安全性和验证&#xff0c;尤其在 FastAPI 等现代 Pytho…

桥接模式和组合模式的区别

桥接模式&#xff08;Bridge Pattern&#xff09;和组合模式&#xff08;Composite Pattern&#xff09;都是结构型设计模式&#xff0c;旨在解决对象结构的复杂性问题&#xff0c;但它们的应用场景和目的有所不同。以下是它们的区别&#xff1a; 1. 定义与目的 桥接模式&…

Qt 小项目 学生管理信息系统

主要是对数据库的增删查改的操作 登录/注册界面&#xff1a; 主页面&#xff1a; 添加信息&#xff1a; 删除信息&#xff1a; 删除第一行&#xff08;支持多行删除&#xff09; 需求分析&#xff1a; 用QT实现一个学生管理信息系统&#xff0c;数据库为MySQL 要求&#xf…

14.数据容器-set集合

特点 无序的&#xff0c;元素不重复&#xff0c;自带去重功能。 可以容纳不同类型的元素数据。 # 定义一个空set my_set {} your_set set() my_set {aa, bb, bb, aa} # {aa, bb} print(my_set) 因为set集合是无序的&#xff0c;所以集合不支持下标索引访问。所以set集合…

“量子跃迁与数据织网:深入探索K最近邻算法在高维空间中的优化路径、神经网络融合技术及未来机器学习生态系统的构建“

&#x1f3bc;个人主页&#xff1a;【Y小夜】 &#x1f60e;作者简介&#xff1a;一位双非学校的大二学生&#xff0c;编程爱好者&#xff0c; 专注于基础和实战分享&#xff0c;欢迎私信咨询&#xff01; &#x1f386;入门专栏&#xff1a;&#x1f387;【MySQL&#xff0…

硬件选型规则

光源选型: 先用型号中带H的&#xff0c;没有的选标准的. 光源和光源控制器的搭配需要确保接口一致。 根据型号表中的最佳工作距离和相机的尺寸。 光源控制器选型&#xff1a; 首先选择海康风格系列光源控制器考虑与光源的接口匹配。功率应该满足接近光源功率。检查是否退市…

【QNX+Android虚拟化方案】135 - QNX侧如何Dump 88Q5152 MIBS报文计数

【QNX+Android虚拟化方案】135 - QNX侧如何Dump 88Q5152 MIBS报文计数 一、读取 88Q5152 MIBS 计数二、读取 88Q5152 WDT 相关寄存器基于原生纯净代码,自学总结 纯技术分享,不会也不敢涉项目、不泄密、不传播代码文档!!! 本文禁止转载分享 !!! 汇总链接:《【QNX+Andro…

C#核心(15)继承中的构造函数

前言 我们之前学过构造函数是什么东西&#xff0c;今天的内容也和构造函数紧密相关&#xff0c;一个继承了父亲的子类里面构造函数的规则是什么样的&#xff0c;今天内容很简单&#xff0c;请听我慢慢讲来。 基本概念 特点&#xff1a;当申明一个子类时&#xff0c;先执行父…

TVbox源贡献指南

欢迎各路大佬踊跃提PR&#xff0c;分享爬虫代码。 源码仓库地址 https://github.com/lushunming/AndroidCatVodSpider 快速开始 本工程是一个完整的AndroidStudio工程&#xff0c;请你用AS打开编辑。 工程调试完毕后要需要导出生成jar文件配合软件使用&#xff0c;执行根目…

FastAPI快速入门

文章目录 了解FastAPI程序结构第一步&#xff0c;导入FastAPI第二步&#xff0c;创建一个app实例第三步&#xff0c;编写一个 路径操作装饰器第五步、运行开发服务器uvicorn main:app --reload即可访问api链接。符案例 声明路径参数声明路径参数的类型get请求查询参数请求体如何…

云计算.运维.面试题

1、计算机能直接识别的语言( C )。 A、汇编语言 B、自然语言 C、机器语言 D、高级语言 2、应用软件是指( D )。 A、所有能够使用的软件 B、能被各应用单位共同使用的某种软件 C、所有计算机上都应使用的基本软件D、专门为某一应用目的而编制的软件 3、计算机的显示器是一…

如何优雅地实现单例模式?内部静态类还是双重检查锁定?

在最近的一个项目中&#xff0c;我需要为一个核心配置类实现单例模式。在设计过程中&#xff0c;我发现要同时满足延迟加载和线程安全这两个要求&#xff0c;常见的实现方式有两种&#xff1a;内部静态类和双重检查锁定&#xff08;Double-Checked Locking, DCL&#xff09;。 …

【计算机网络】 —— 数据链路层(壹)

文章目录 前言 一、概述 1. 基本概念 2. 数据链路层的三个主要问题 二、封装成帧 1. 概念 2. 帧头、帧尾的作用 3. 透明传输 4. 提高效率 三、差错检测 1. 概念 2. 奇偶校验 3. 循环冗余校验CRC 1. 步骤 2. 生成多项式 3. 例题 4. 总结 四、可靠传输 1. 基本…