论文笔记 SliceGPT: Compress Large Language Models By Deleting Rows And Columns

欲买桂花同载酒,终不似,少年游。

数学知识

秩: 矩阵中最大线性无关的行/列向量数。行秩与列秩相等
线性无关:对于N个向量而言,如果任取一个向量 v \textbf{v} v,不能被剩下的N-1个向量通过线性组合的方式表示,则称这N个向量为线性无关

SliceGPT: Compress Large Language Models By Deleting Rows And Columns

主要剪枝的效果:

  1. 将权重矩阵的尺寸缩小,变成更小的矩阵。具体而言是乘以一个Deleting Matrix D \textbf{D} D。这个矩阵实际上是通过构造一个正交矩阵,再做PCA删除一些行/列得到。
  2. 减少embedding dimension。与权重矩阵的缩小对应。
    可以参考Figure 1中右图

在这里插入图片描述


0. Introduction

目前许多权重剪枝的方法都需要RFT(recovery fine-tuning),耗时并且可拓展性差。

  • SliceGPT无需RFT也能有良好的效果。

本文的三大Contributions

  1. 引入了计算不变性。对于transformer中的权重矩阵做正交变换。简而言之就是乘上一个正交矩阵和正交矩阵的转置,计算结果不变。
  2. 使用signal matrix计算正交阵,利用PCA,在其主成分方向做投影后,与权重矩阵相乘,移去部分columns和rows以达到权重剪枝的目的。
  3. 在多个模型,不同任务上做实验并证明效果良好。

1. Related Work

常见的稀疏化方法:

  1. magnitude-based:移除绝对值较小的权重,但性能损失较大。
  2. OBS(optimial brain surgeon):使用Hessian矩阵来更新weight,移除对loss函数影响最小的weight。但是计算Hessian的逆过于复杂,尤其是大模型。
  3. 针对OBS的问题:
    1. 近似Hessian,如WoodFisher
    2. 逐层使用OBS,比如OBC(optimal brain compression)。
  4. GPTQ:量化权重矩阵。
  5. sparseGPT:半结构化/非结构化剪枝
  6. 仅使用Hessian的对角项(对角近似)

2. Transformer模型架构回顾。

相关信息可以参阅CSDN或知乎关于Transformer原文的详解,也可以参考我的这篇文章(内容比较简略):Transformer架构笔记

一个典型的Transformer中Encoder的结构Figure 2所示,作者把这样一个结构称为Transformer Block(不同的Transformer实现可能有所不同):
在这里插入图片描述

简要回顾一下Transformer的主要组件,以及约定符号表示。
一个标准的Transformer Block包含Attention BlockFFN BlockLayerNorm层。Transformer在起始阶段有embedding层将sequence转为嵌入向量,末尾有一个输出层,文中称为Language Modelling Head,将embedding转为对下一个word的预测。

  • Embeddings层:将sequence: S S S,转为embedding: X ∈ R N × D \textbf{X} \in R^{N \times D} XRN×D。其中 N N N为序列长度, D D D为嵌入向量的长度,同时一般也是模型当中统一的hidden dimension。 W embd ∈ R h × D W_\text{embd} \in R^{h \times D} WembdRh×D为该层的权重矩阵。 h h hone-hot编码长度。

  • LN层(LayerNorm):标准的Transformer使用LN,而作者使用RMSNorm原因是其具有计算不变性(Computational Invariance)。RMSNorm相比于LN而言计算更简单,每个元素只除以RMS均方根,并且这里求均方根时,统计的是 X \textbf{X} X中的所有元素: 共 N × D N \times D N×D个,这也是为什么后面要乘以一个 D \sqrt{D} D 的原因。LN是对每个样本做归一化,即按行归一化)即可,LN与RMSNorm之间的关系如下:
    LayerNorm ( X ) = RMSNorm ( X M ) diag ( α ) D + 1 N β ⊤ (1) \text{LayerNorm}(\mathbf{X})=\text{RMSNorm}(\mathbf{X}\mathbf{M})\text{diag}(\mathbf{\alpha})\sqrt{D}+\mathbf{1}_N\beta^\top \tag1 LayerNorm(X)=RMSNorm(XM)diag(α)D +1Nβ(1)

其中:
M = I − 1 D 1 ⋅ 1 T s . t . I ∈ R D × D , 1 ∈ R D × 1 \textbf{M} = I - \frac{1}{D}1 \cdot 1^T \quad s.t. \quad I \in \mathbb{R}^{D \times D}, \ 1 \in \mathbb{R}^{D \times 1} M=ID111Ts.t.IRD×D, 1RD×1

输入乘上 M \textbf{M} M相当于逐行减去mean。 d i a g ( α ) diag(\alpha) diag(α)为缩放系数, β \beta β为偏置项。

  • Attention Blocks:使用多头注意力, W k , W q , W v , W o , \mathbf{W}_k,\mathbf{W}_q,\mathbf{W}_v\mathrm{,}\mathbf{W}_o, Wk,Wq,Wv,Wo,分别对应K, Q, V, Output的权重矩阵。(output是一个Linear,把各个head拼接后的embedding再映射回去)。Attention Block用以下公式表示:
    σ ( W i n + b i n ) W o u t + b o u t (2) \sigma(\mathbf{W}_{\mathrm{in}}+\boldsymbol{b}_{\mathrm{in}})\mathbf{W}_{\mathrm{out}}+\boldsymbol{b}_{\mathrm{out}} \tag2 σ(Win+bin)Wout+bout(2)
    作者把 W k , W q , W v \mathbf{W}_k,\mathbf{W}_q,\mathbf{W}_v Wk,Wq,Wv统称为 W i n W_{in} Win,因为这几个矩阵对attention block的输入做线性变换,把 W o \mathbf{W}_o Wo称为 W o u t \mathbf{W}_{out} Wout,因为是attention中的输出层(多头注意力中把concatenated embedding映射回原维度)。

  • FFN Blocks: σ ( XW in ) W out \sigma(\textbf{XW}_\text{in})\textbf{W}_\text{out} σ(XWin)Wout。即MLP,简而言之就是先后做两次线性变换,先升维,再还原维度。

  • LM Head XW head + b head \textbf{XW}_\text{head} + \textbf{b}_\text{head} XWhead+bhead。其中 X \textbf{X} X为最后一个FFN Block的输出。LM Head输出即为最终的预测word。

Transformer整体的前向传播流程如Algorithm1所示:
在这里插入图片描述

3.SliceGPT

Key IdeaComputational Invariance。即:对线性层(使用nn.Linear的层如Attention,FFN)施加正交变换,计算结果不变。

3.1 Transformer中的computational invariance的说明

  • 正交矩阵的保范性:假设 Q \textbf{Q} Q为正交矩阵,则 Q Q T = I \textbf{Q}\textbf{Q}^T = \textbf{I} QQT=I,对于向量 x \textbf{x} x ∣ ∣ Qx ∣ ∣ = x T Q T Qx = x T x = ∣ ∣ x ∣ ∣ ||\textbf{Q}\textbf{x}|| = \sqrt{\textbf{x}^T\textbf{Q}^T\textbf{Q}\textbf{x}} = \sqrt{\textbf{x}^T\textbf{x}} = || \textbf{x} || ∣∣Qx∣∣=xTQTQx =xTx =∣∣x∣∣。即向量乘以正交阵不改变其范数。这里列出的是L2范数。

作者指出RMSNorm具有计算不变性,如eq2所示,作者在Appendix A.1给出了证明:
R M S N o r m ( X ℓ Q ) Q ⊤ = R M S N o r m ( X ℓ ) . (2) \mathrm{RMSNorm}(\mathbf{X}_\ell\mathbf{Q})\mathbf{Q}^\top=\mathrm{RMSNorm}(\mathbf{X}_\ell) . \tag2 RMSNorm(XQ)Q=RMSNorm(X).(2)

3.1(续)定理一以及证明:

定理一:作者指出,给Transformer当中的权重矩阵施加正交变换,能够保证其计算不变性:
W ~ e m b d = W e m b d Q , (3) b ~ o u t ℓ = b o u t ℓ Q , (6) W ~ i n ℓ = Q ⊤ W i n ℓ , (4) W ~ h e a d = Q ⊤ W h e a d . (7) W ~ o u t ℓ = W o u t ℓ Q , (5) \begin{array}{crcr} \tilde{\mathbf{W}}_{embd}=\mathbf{W}_{embd}\mathbf{Q}, \qquad & \text{(3)} & \qquad \tilde{\boldsymbol{b}}_{out}^{\ell}=\boldsymbol{b}_{out}^{\ell} \mathbf{Q}, \qquad & \text{(6)} \\ \tilde{\mathbf{W}}_{in}^{\ell}=\mathbf{Q}^{\top}\mathbf{W}_{in}^{\ell}, \qquad & \text{(4)} & \qquad \tilde{\mathbf{W}}_{head}=\mathbf{Q}^{\top}\mathbf{W}_{head} .\qquad & \text{(7)} \\ \tilde{\mathbf{W}}_{out}^{\ell}=\mathbf{W}_{out}^{\ell}\mathbf{Q}, \qquad & \text{(5)} & \end{array} W~embd=WembdQ,W~in=QWin,W~out=WoutQ,(3)(4)(5)b~out=boutQ,W~head=QWhead.(6)(7)
加波浪线的为变换后(microsoft实现代码中称为rotate旋转

  • 注:原文中eq.6为 b ~ o u t ℓ = Q ⊤ b o u t ℓ \tilde{\boldsymbol{b}}_{out}^{\ell}=\mathbf{Q}^\top\boldsymbol{b}_{out}^{\ell} b~out=Qbout,好像有问题,正在向作者咨询。
  • 注: b ~ i n ℓ = b i n ℓ , b ~ h e a d = b h e a d . \tilde{\boldsymbol{b}}_{in}^{\ell}=\boldsymbol{b}_{in}^{\ell},\tilde{\boldsymbol{b}}_{head}=\boldsymbol{b}_{head}. b~in=bin,b~head=bhead.

在这里我们也可以简单证明一下。我们参考Algorithm 1中1-7行,对前向传播的各个步骤给出对应的公式:
1 ⁣ : X ← S W e m b d 2 ⁣ : X ← R M S N o r m 0 ( X ) 3 ⁣ : f o r ℓ = 1 … L d o 4 : Z ← σ ℓ ( X W i n ℓ + b i n ℓ ) W o u t ℓ + b o u t ℓ 5 : X ← R M S N o r m ℓ ( X + Z ) 6 : end for 7 : return XW h e a d + b h e a d \begin{aligned} &1\colon\mathbf{X} \leftarrow S\mathbf{W}_{\mathrm{embd}}\\ &2\colon\mathbf{X} \leftarrow \mathrm{RMSNorm}_0(\mathbf{X})\\ &3\colon\mathbf{for}\ell=1\ldots L\mathbf{~do}\\ &4{:}\quad\mathbf{Z} \leftarrow \sigma_\ell(\mathbf{XW}_{\mathrm{in}}^\ell+\boldsymbol{b}_{\mathrm{in}}^\ell)\mathbf{W}_{\mathrm{out}}^\ell+\boldsymbol{b}_{\mathrm{out}}^\ell\\ &5{:}\quad\mathbf{X} \leftarrow \mathrm{RMSNorm}_\ell(\mathbf{X}+\mathbf{Z})\\ &6{:}\textbf{ end for}\\ &7{:}\textbf{ return XW}_{\mathrm{head}}+\mathbf{b}_{\mathrm{head}} \end{aligned} 1:XSWembd2:XRMSNorm0(X)3:for=1L do4:Zσ(XWin+bin)Wout+bout5:XRMSNorm(X+Z)6: end for7: return XWhead+bhead
其中 S ∈ R N × h , W e m b d ∈ R h × D , W h e a d ∈ R D × h S \in R^{N \times h}, \mathbf{W}_{\mathrm{embd}} \in R^{h \times D},\mathbf{W}_{\mathrm{head}} \in R^{D \times h} SRN×hWembdRh×DWheadRD×h。为了简化,统一认为 W i n , W o u t ∈ R D × D \mathbf{W}_{\mathrm{in}}, \mathbf{W}_{\mathrm{out}} \in R^{D \times D} Win,WoutRD×D。其中 N N N为序列长度, h h h为one-hot编码的长度, D D D为hidden dimension(或者叫embedding dimension)。

施加正交矩阵 Q \mathbf{Q} Q后的各步骤公式如下,我们将 X , X ~ \mathbf{X}, \tilde{\mathbf{X}} X,X~分别表示为施加正交变换前,正交变换后block的输入/输出:

  • line1 : S W ~ e m b d = S W e m b d Q = X Q → X ~ \text{line1}: S\tilde{\mathbf{W}}_{\mathrm{embd}} = S\mathbf{W}_{\mathrm{embd}}\mathbf{Q} = \mathbf{XQ} \rightarrow \tilde{\mathbf{X}} line1:SW~embd=SWembdQ=XQX~

  • line2 : RMSNorm ( X ~ ) = RMSNorm ( X Q ) = RMSNorm ( X ) Q → X ~ \text{line2}: \text{RMSNorm}(\tilde{\mathbf{X}}) = \text{RMSNorm}(\mathbf{X}\mathbf{Q}) = \text{RMSNorm}(\mathbf{X})\mathbf{Q} \rightarrow \tilde{\mathbf{X}} line2:RMSNorm(X~)=RMSNorm(XQ)=RMSNorm(X)QX~

  • line4 : σ ℓ ( X ~ W ~ i n ℓ + b ~ i n ℓ ) W ~ o u t ℓ + b ~ o u t ℓ = σ ℓ ( X Q Q ⊤ W i n ℓ + b i n ℓ ) W o u t ℓ Q + b o u t ℓ Q = ( σ ℓ ( X W i n ℓ + b i n ℓ ) W o u t ℓ + b o u t ℓ ) Q = Z Q → Z ~ \text{line4}: \sigma_\ell(\mathbf{\tilde{X}\tilde{W}}_{\mathrm{in}}^\ell+\boldsymbol{\tilde{b}}_{\mathrm{in}}^\ell)\mathbf{\tilde{W}}_{\mathrm{out}}^\ell+\boldsymbol{\tilde{b}}_{\mathrm{out}}^\ell = \sigma_\ell(\mathbf{X Q Q^\top W}_{\mathrm{in}}^\ell+\boldsymbol{b}_{\mathrm{in}}^\ell)\mathbf{W}_{\mathrm{out}}^\ell \mathbf{Q}+\boldsymbol{b}_{\mathrm{out}}^\ell \mathbf{Q} = (\sigma_\ell(\mathbf{XW}_{\mathrm{in}}^\ell+\boldsymbol{b}_{\mathrm{in}}^\ell)\mathbf{W}_{\mathrm{out}}^\ell+\boldsymbol{b}_{\mathrm{out}}^\ell)\mathbf{Q} = \mathbf{ZQ} \rightarrow \tilde{\mathbf{Z}} line4:σ(X~W~in+b~in)W~out+b~out=σ(XQQWin+bin)WoutQ+boutQ=(σ(XWin+bin)Wout+bout)Q=ZQZ~

  • line5 : RMSNorm ( X ~ + Z ~ ) = RMSNorm ( X Q + Z Q ) = RMSNorm ( X + Z ) Q = X Q → X ~ \text{line5}: \text{RMSNorm}(\tilde{\mathbf{X}} + \tilde{\mathbf{Z}}) = \text{RMSNorm}(\mathbf{XQ} + \mathbf{ZQ}) = \text{RMSNorm}(\mathbf{X} + \mathbf{Z})\mathbf{Q} = \mathbf{XQ} \rightarrow \mathbf{\tilde{X}} line5:RMSNorm(X~+Z~)=RMSNorm(XQ+ZQ)=RMSNorm(X+Z)Q=XQX~

  • line7 : X ~ W ~ head + b ~ head = X Q Q ⊤ W head + b head = X W head + b head → X ~ = X \text{line7}: \mathbf{\tilde{X}}\mathbf{\tilde{W}}_\text{head} + \boldsymbol{\tilde{b}}_\text{head} = \mathbf{X Q Q^\top W_\text{head}} + \boldsymbol{b}_\text{head} = \mathbf{X W_\text{head}} + \boldsymbol{b}_\text{head} \rightarrow \mathbf{\tilde{X}} = \mathbf{X} line7:X~W~head+b~head=XQQWhead+bhead=XWhead+bheadX~=X

发现 line7 \text{line7} line7 结果相等。综上,可以证明变换前后输出不变。

3.2 Transformer中LN向RMSNorm的转换:

根据eq.1我们可以知道LN与RMSNorm之间存在转换关系。其中最重要的两个就是mean-substraction: M \mathbf{M} M,以及系数: diag ( α ) \text{diag}(\alpha) diag(α)。作者指出,可以将LayerNorm中的这两个步骤分别放在前一个Block与后一个Block当中,如Figure 3所示。可以对比一下Figure 2与Figure 3有哪些不同。
在这里插入图片描述

可以发现, W in \mathbf{W}_\text{in} Win都是左乘 diag ( α ) \text{diag}(\alpha) diag(α),而 W out \mathbf{W}_\text{out} Wout均为右乘 M \mathbf{M} M。除了考虑Figure 3中所包含的Attention Block以及FFN Block当中的 W in \mathbf{W}_\text{in} Win W out \mathbf{W}_\text{out} Wout以外,考虑 W embd , W head \mathbf{W}_\text{embd}, \mathbf{W}_\text{head} Wembd,Whead应该分别左乘 diag ( α ) \text{diag}(\alpha) diag(α)、右乘 M \mathbf{M} M。(这里其实很好理解,因为embedding层位于第一个LN层的前面,而LM Head层恰好在最后一个LN层的后面)

用矩阵运算求均值:乘以矩阵 M M M即可。对最后一个维度求均值(对一行求均值):
M = I − 1 D 1 ⋅ 1 T s . t . I ∈ R D × D , 1 ∈ R D × 1 M = I - \frac{1}{D}1 \cdot 1^T \quad s.t. \quad I \in \mathbb{R}^{D \times D}, \ 1 \in \mathbb{R}^{D \times 1} M=ID111Ts.t.IRD×D, 1RD×1
因此严格来说,将LayerNorm中的均值相减操作融合至前一个block后,似乎与原始的模型不太一致,因为矩阵乘法不遵循交换律。但代码实现中直接对权重矩阵做了mean-substraction操作。本人理解可能是作者为了简便,以及希望可以pre-compute W in \mathbf{W}_\text{in} Win 的一种权宜之计。(这里加粗处存疑,如有问题请大佬指正

3.3 Transformation Per Block

作者指出,对不同的Block,应该根据当前输入的signal matrix的不同,计算得到不同的正交阵 Q \mathbf{Q} Q。但是Algorithm 1中 line 5 \text{line 5} line 5会存在等式不相等的情况:
( X ~ + Z ~ ) = ( X Q ℓ − 1 + Z Q ℓ ) ≠ ( X + Z ) Q ℓ . 因为不同Block正交阵不相等 (\tilde{\mathbf{X}} + \tilde{\mathbf{Z}}) = (\mathbf{X}\mathbf{Q}_{\ell - 1} + \mathbf{Z}\mathbf{Q}_\ell) \neq (\mathbf{X} + \mathbf{Z})\mathbf{Q}_\ell. \quad \text{因为不同Block正交阵不相等} (X~+Z~)=(XQ1+ZQ)=(X+Z)Q.因为不同Block正交阵不相等
本质原因是存在Residual Connection。故每一个残差连接对应的 X \textbf{X} X应当右乘 Q ℓ − 1 Q ℓ \mathbf{Q}_{\ell - 1}\mathbf{Q}_\ell Q1Q,以保证 line 5 \text{line 5} line 5等式成立。

最终的经过变换后的Transformer Block示意图如Figure 4所示:
在这里插入图片描述

3.3(续)如何构造正交阵Q

作者提出根据每一层不同的signal matrix,分别构造不同的正交阵。公式如下:
C ℓ = ∑ i X ℓ , i ⊤ X ℓ , i (8) \mathbf{C}_{\ell}=\sum_{i}\mathbf{X}_{\ell,i}^{\top}\mathbf{X}_{\ell,i} \tag8 C=iX,iX,i(8)
其中 X ℓ , i \mathbf{X}_{\ell,i} X,i表示第 ℓ \ell RMSNorm \text{RMSNorm} RMSNorm层对于第 i i i个sequence的输出。 Q ℓ \mathbf{Q}_\ell Q即为 C ℓ \mathbf{C}_{\ell} C经过特征分解后,按特征值从大到小排列的所有特征向量所构成的矩阵。
注: C ℓ \mathbf{C}_{\ell} C对称矩阵有什么意义?首先实对称矩阵的特征值肯定为实数。

3.4 Slicing

类似PCA当中的操作,选取 Q \mathbf{Q} Q的特征值最大的 D small D_\text{small} Dsmall个特征向量,构造删除矩阵 D ∈ R D × D small \mathbf{D} \in R^{D \times D_\text{small}} DRD×Dsmall,将 X \mathbf{X} X映射为一个低纬度的特征 Z \mathbf{Z} Z,然后再经过正交阵的转置,又变换回 X ~ \tilde{\mathbf{X}} X~,相当于reconstruction的过程。如以下公式所示:

Z = X Q D , X ~ = Z D ⊤ Q ⊤ . (9) \mathbf{Z}=\mathbf{X}\mathbf{Q}\mathbf{D}\mathrm{~,~~~~}\tilde{\mathbf{X}}=\mathbf{Z}\mathbf{D}^{\top}\mathbf{Q}^{\top}. \tag9 Z=XQD ,    X~=ZDQ.(9)

具体的slice过程如下图所示(Figure 1的右图)
在这里插入图片描述


多头注意力机制实现方法:

  1. 第一种实现:将输入向量降维成多个低维向量,比如8个头,embedding维度为512,那么就有24个Linear(512, 64),其中8个作为 W q W_q Wq,8个作为 W k W_k Wk,8个作为 W v W_v Wv,这里Linear(512, 64)即是权重矩阵,也起到降维作用。然后8个降维后的向量各自做各自的attention,得到attention中每个head的输出(每个维度为64),再把这8个输出拼接起来,得到维度为512,然后再经过一个线性层Linear(512,512),得到multi-head attention最终的输出。
  2. 第二种实现:还是8个头的注意力机制,但是 W q , W k , W v W_q,W_k,W_v WqWkWv都只有一个,为Linear(512,512),然后将 W q , W k , W v W_q,W_k,W_v WqWkWv输出的embedding reshape(使用view函数),把shape变换为[N, seq, head_num, head_dim]分别对应为样本数,序列长度,head数量,每个head分得的维度数(比如8个头,则shape为[N, seq, 8, 64]),然后直接做点乘,最后再reshape将维度变换回去,再经过线性层Linear(512,512),得到多头注意力机制的最终输出。

问题

  1. 如何做Fusion?即如何将LN中的Linear operation融合至相邻线性层?
    Embedding层只做了mean substraction。其余层直接和LN层的参数做element-wise multiplication。相当于乘以了缩放系数,这里没问题。
  2. 如何求解正交矩阵 Q \mathbf{Q} Q?对signal matrix(指的是input / embedding)使用PCA,QR分解(后续需补充QR分解和特征分解的关系)。
  3. 文中提到哪些部分不能pre-computed?指的是 Q ℓ − 1 Q ℓ \mathbf{Q}_{\ell - 1}\mathbf{Q}_\ell Q1Q,可以从代码实现中看到,该算法是一边forward,一边剪枝,也就是需要等当前的Block前向传播完毕后,拿到当前Block的输出(下一个Block的输入),才能开始计算下一个Block的 Q \mathbf{Q} Q。比如当前是第 ℓ − 1 \ell - 1 1个Block,等这一个Block前向传播完毕后,才能开始算 Q ℓ \mathbf{Q}_{\ell} Q
  4. Norm层的可学习参数是指的哪些?指 γ , β \gamma,\beta γβ即缩放系数和偏移量: https://www.cnblogs.com/tian777/p/17911800.html
  5. Convolutional Layer是否也具有计算不变性?
  6. LN层为什么不具备计算不变性?
  7. 解释RMSNorm为什么具备计算不变性?

词语释义

cornerstone 基石
post-hoc = after this 事后的adj./事后adv.
complementary 补充的
undertaking 任务/项目
so long as 只要
whilst 与此同时


参考链接

  • SliceGPT原文链接
  • SliceGPT源码
  • LLM大模型压缩——ICLR 2024 SliceGPT(原理详解)
  • SliceGPT概述
  • Phi-2 Transformer模型代码
    (作者的实验代码中给出了Phi-2对应的ModelAdapter以及LayerAdapter的实现)
  • 机器之心: SliceGPT

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/61349.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pnpm安装electron出现postinstall$ node install.js报错

pnpm install --registryhttp://registry.npm.taobao.org安装依赖包的时候出现了postinstall$ node install.js报错 找到install.js 找到downloadArtifact方法,添加如下代码 mirrorOptions:{mirror:"http://npmmirror.com/mirrors/electron/"}http://n…

MySQL之单行函数

目录 1. 函数的理解 单行函数 2. 数值函数 2.1 基本函数 2.2 角度与弧度互换函数 2.3 三角函数 2.4 指数与对数 2.5 进制间的转换 3. 字符串函数 4. 日期和时间函数 4.1 获取日期、时间 4.2 日期与时间戳的转换​编辑 4.3 获取月份、星期、星期数、天数等函数 4.4 …

文档加密怎么做才安全?

公司的文档包含很多机密文件,这些文件不仅关乎公司的核心竞争力,还涉及到客户隐私、商业策略等敏感信息。因此,文档的保管和传递一直是我们工作的重中之重。 为了确保机密文件的安全,公司需要制定了一系列严格的保密措施。从文件的…

golang debug调试

1. 本地调试 1:Add Configurations 添加配置文件(Run kind :Directory) 2:进入run运行窗口 3:debug断点调试模式 1. Resume Program (继续运行) 图标: ▶️ 或 ► 快捷键: F9(Windows/Linux&a…

计算机毕业设计Hadoop+Spark音乐推荐系统 音乐预测系统 音乐可视化大屏 音乐爬虫 HDFS hive数据仓库 机器学习 深度学习 大数据毕业设计

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

基础入门-Web应用架构搭建域名源码站库分离MVC模型解析受限对应路径

知识点: 1、基础入门-Web应用-域名上的技术要点 2、基础入门-Web应用-源码上的技术要点 3、基础入门-Web应用-数据上的技术要点 4、基础入门-Web应用-解析上的技术要点 5、基础入门-Web应用-平台上的技术要点 一、演示案例-域名差异-主站&分站&端口站&…

leetcode:LCR 139. 训练计划 I(python3解法)

难度:简单 教练使用整数数组 actions 记录一系列核心肌群训练项目编号。为增强训练趣味性,需要将所有奇数编号训练项目调整至偶数编号训练项目之前。请将调整后的训练项目编号以 数组 形式返回。 示例 1: 输入:actions [1,2,3,4,…

selinux、firewalld

一、selinux 1、selinux(是Security-Enhanced Linux)------ 安全强化的linux 2、selinux的工作原理 2.1 工作原理 ------- SELinux是通过MAC的方式来控制管理进程,它控制的主体是进程,而目标则是该进程能否读取的文件资源。 主…

wordpress网站首页底部栏显示网站备案信息

一、页脚文件footer.php 例如,wordpress主题使用的是simple-life主题,服务器IP为192.168.68.89,在wordpress主题文件中有个页脚文件footer.php,这是一个包含网站页脚代码的文件。 footer.php 路径如下: /www/wwwroot/192.168.68…

AI需求条目化全面升级!支持多格式需求,打破模板限制!

AI需求条目化全面升级!支持多格式需求,打破模板限制! 一、多格兼济 标准立成 1、功能揭秘 预览未来 平台需求板块的AI需求条目化功能迎来全面升级。它支持多种需求格式,不再受限于模板文件,能够一键自动快速且灵活地生…

【c++篇】:解读Set和Map的封装原理--编程中的数据结构优化秘籍

✨感谢您阅读本篇文章,文章内容是个人学习笔记的整理,如果哪里有误的话还请您指正噢✨ ✨ 个人主页:余辉zmh–CSDN博客 ✨ 文章所属专栏:c篇–CSDN博客 文章目录 前言一.set和map的初步封装1.树的节点封装修改2.Find()查找函数3.红…

机器学习实战:泰坦尼克号乘客生存率预测(数据处理+特征工程+建模预测)

项目描述 任务:根据训练集数据中的数据预测泰坦尼克号上哪些乘客能生存下来 数据源:csv文件(train.csv) 目标变量:Survived(0-1变量) 数据集预览: 1、英文描述: 2、…

Linux自动化部署方法(Linux Automated Deployment Method)

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 本人主要分享计算机核心技…

嵌入式 FPGA开发

目录 一、引言 二、当前嵌入式 FPGA 开发的现状 三、嵌入式 FPGA 开发的优势 四、嵌入式 FPGA 的应用领域 1. 通信系统 2. 数字信号处理 3. 视频图像处理 4. 高速接口设计 5. 人工智能 6. IC 设计与 PCB 设计类比 五、嵌入式 FPGA 未来发展趋势 六、结论 一、引言 …

工业AI质检 AI质检智能系统 尤劲恩(上海)信息科技有限公司

来的现代化工厂,将逐步被无人化车间取代,无人工厂除了产线自动化,其无人质检将是绕不开的话题。尤劲恩致力于帮助工业制造领域上下游工厂减员增效、提高品质效率,真正实现无人质检IQC/IPQC/OQC的在线质检系统。分析生产环节真实品…

Angular v19 (三):增量水合特性详解 - 什么是水合过程?有哪些应用场景?与 Qwik 相比谁更胜一筹?- 哪个技术好我就学哪个,这就是吸心大法吧

Angular在其最新版本 v19 中引入了增量水合(Incremental Hydration)这一特性。这一更新引发了开发者们广泛的讨论,特别是在优化首屏加载速度和改善用户体验方面。本文将详解水合过程的概念、增量水合的应用场景,以及它与类似框架如…

[STM32]从零开始的STM32 FreeRTOS移植教程

一、前言 如果能看到这个教程的话,说明大家已经学习嵌入式有一段时间了。还记得嵌入式在大多数时候指的是什么吗?是的,我们所说的学习嵌入式大部分时候都是在学习嵌入式操作系统。从简单的一些任务状态机再到复杂一些的RTOS,再到最…

Vivado程序固化到Flash

在上板调试FPGA时,通常使用JTAG接口下载程序到FPGA芯片中,FPGA本身是基于RAM工艺的器件,因此掉电后会丢失芯片内的程序,需要重新烧写程序。但是当程序需要投入使用时不能每一次都使用JTAG接口下载程序,一般FPGA的外围会…

医疗废物检测

3809总图像数 数据集分割 训练组80% 3030图片 有效集20% 779图片 测试集% 0图片 标签 预处理 自动定向: 已应用 调整大小: 拉伸至 640x640 增强 未应用任何增强。 注射器 手术刀 输液管 医用手套 医用口罩 血渍 数据集…

如何进行JOIN优化

如何进行JOIN优化 简单来说,JOIN是MySQL用来进行联表操作的,用来匹配两个表的数据,筛选并合并符合我们要求的结果集,但使用了Join我们一般会对它多一点关注,在java开发手册中,禁止三个表以上关联使用Join&…