基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

MATLAB2022A

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)


SEL = 2;load data.matif SEL == 1netbp = newff(F1',T1',64);netbp = train(netbp,F1',T1'); save netmodel.mat netbp
elseload netmodel.mat 
endSNR = [-20:5:10];for i = 1:length(SNR)ifor j = 1:50F2n     = awgn(F2,SNR(i),'measured');T_out   = round(sim(netbp,F2n'));sbl2(j) = 100*length(find(T_out==T2'))/length(T2);endsbl(i) = mean(sbl2);
endfigure;
plot(SNR,sbl,'-r>',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);
xlabel('SNR');
ylabel('BP网络识别率');
grid on
axis([-25,12,0,80]);save r1.mat  SNR sbl
10_039m

4.算法理论概述

       人脸识别是计算机视觉领域中的一个重要研究方向,它在安防、金融、交通等众多领域有着广泛的应用。机器学习算法为人脸识别提供了强大的工具,不同的机器学习算法在人脸识别中的性能表现和原理各有特点。本文将详细介绍广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的原理,并对它们进行比较。

       GRNN 是一种径向基神经网络(RBFN)的变体,它具有一个输入层、一个隐含层和一个输出层。输入层的神经元数量等于输入特征的维度,隐含层神经元的数量通常与训练样本的数量相同,输出层神经元的数量根据具体的预测任务确定。

       PNN 也是一种基于径向基函数的神经网络,它由输入层、模式层、求和层和输出层组成。输入层用于接收输入数据(人脸特征向量),模式层的神经元数量通常等于训练样本的数量,求和层用于对模式层的输出进行求和操作,输出层根据求和层的结果进行分类决策。

      BP 神经网络通常由输入层、一个或多个隐藏层和输出层组成。输入层神经元数量等于输入特征的维度,输出层神经元数量根据输出类别数量确定,隐藏层神经元数量可以根据经验或实验进行设置。

       DNN 是一种包含多个隐藏层的神经网络,典型的结构包括输入层、多个隐藏层和输出层。隐藏层可以是全连接层、卷积层(在处理图像数据时常用)、池化层等多种形式的组合。在人脸识别中,卷积神经网络(CNN)是一种常用的 DNN 结构,它通过卷积层提取人脸图像的特征,池化层进行特征压缩,全连接层进行分类决策。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/60526.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

macOS安装nvm node

macOS安装nvm macOS安装nvm创建 nvm 工作目录配置环境变量使用 nvm查看可用的 Node.js 版本安装特定版本 macOS安装nvm brew install nvm创建 nvm 工作目录 mkdir ~/.nvm配置环境变量 vim ~/.zshrc# nvm export NVM_DIR"$HOME/.nvm" [ -s "/opt/homebrew/opt…

详细描述一下Elasticsearch更新和删除文档的过程?

大家好,我是锋哥。今天分享关于【详细描述一下Elasticsearch更新和删除文档的过程?】面试题。希望对大家有帮助; 详细描述一下Elasticsearch更新和删除文档的过程? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 E…

Ruby 模块(Module)

Ruby 模块(Module) 概述 Ruby 是一种动态、开放源代码的编程语言,以其简洁明了的语法和强大的功能而闻名。在 Ruby 中,模块(Module)是一个重要的概念,它用于封装一组相关的方法和常量。模块提…

关于相机选型的一些参数说明

上一篇:关于相机的一些参数计算(靶面、视野等) 目录 1.卷帘快门和全局快门1.1 卷帘快门1.2 全局快门PS:视觉伺服与快门选择 2.黑白和彩色3.CCD和CMOS3.1 CCD3.2 CMOSCCD VS CMOS 4.面阵和线扫4.1 面阵4.2 线扫4.3 面阵 VS 线扫 5.…

ctfshow

1,web21 Basic认证采用Base64加密方式,Base64解码字符串发现是 用户名:密码 的格式进行Base64编码。 密码shark63 2,web22 用 子域名扫描器 扫出flag.ctf.show拿到flag,但这个域名已经没了所以就直接交的官方提供的flag。 3,web23 这段PHP代码是一个简单…

python 什么是数据类dataclass,以及它的应用场景

一、什么是数据类dataclass? dataclass 是 Python 3.7 引入的一个模块,旨在简化类的定义,特别是对于那些主要用于存储数据的类。它通过自动生成常见的方法(如 __init__、__repr__、__eq__ 等)来减少样板代码,使得开发…

条件编译(手绘)

大家好,今天给大家分享一下条件编译,由于符号有点难写,我已经将内容记在笔记本中,现在供大家学习。 那么我们来看看代码的实现

前端和后端

前端和后端 前端、后端的编程语言/服务器前端定义前端技术栈后端定义后端技术栈 web服务器数据库浏览器URL 前端、后端的编程语言/服务器 前端定义 前端指的是用户在使用软件时所看到的那部分,是与用户直接进行交互的部分。主要负责展示信息或数据,并将…

【滤波器】低通、带通、高通滤波器区别及作用

滤波器种类与区别 滤波器是用来选择信号中某一频段并抑制其他频段的一类电路元件或系统,主要根据频率选择性分类。以下是常见的三种滤波器(低通、带通、高通)的区别,以及其他类型的滤波器。 1. 低通滤波器(Low-Pass F…

大数据技术之SparkCore

RDD概述 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。 RDD五大特性 RDD编程 RDD的创…

MacOS通过VMware Fusion安装windows 11问题汇总

环境 虚拟机,VMware Fusion 13.6.1本地机器,ARM芯片的Mac,系统版本14.5Windows系统镜像,Window11 ARM 64 bit 安装卡在WiFi连接界面 适合我本地环境的解决步骤为: 1、系统设置网络共享 我开启的是en5,这…

高度统一:极大和极小如何统于一

英语里有两个单词: min n.最小值max n.最大值 min和max其实是缩略值,它们词源上的本质,min来自于“极小”,max来自于“极大”,都来自于“极,极限,极度”的概念 那么,问题来了&…

Python 快速入门(上篇)❖ Python基础知识

Python 基础知识 Python安装**运行第一个程序:基本数据类型算术运算符变量赋值操作符转义符获取用户输入综合案例:简单计算器实现Python安装** Linux安装: yum install python36 -y或者编译安装指定版本:https://www.python.org/downloads/source/ wget https://www.pyt…

element-plus教程:Layout 布局

一、基础用法 1. 引入Layout布局组件 首先&#xff0c;确保你已经在项目中安装了Element Plus&#xff0c;并在main.js或main.ts中引入了Element Plus及其样式。 2. 使用<el-row>和<el-col>组件 在Element Plus中&#xff0c;Layout布局主要通过<el-row>…

Python 使用 Token 认证方案连接 Kubernetes (k8s) 的详细过程

在 Kubernetes 中&#xff0c;使用 Token 认证是一种常见的客户端身份验证方式&#xff0c;尤其适用于 ServiceAccount。以下是详细的步骤&#xff0c;包括如何查看 Token、获取 API 服务地址、配置远程连接&#xff0c;以及如何在 Python 中连接 k8s。 1. 获取 Token 首先&a…

Exploring Prompt Engineering: A Systematic Review with SWOT Analysis

文章目录 题目摘要简介方法论背景相关工作评估结论 题目 探索快速工程&#xff1a;基于 SWOT 分析的系统评价 论文地址&#xff1a; https://arxiv.org/abs/2410.12843 摘要 在本文中&#xff0c;我们对大型语言模型 (LLM) 领域的提示工程技术进行了全面的 SWOT 分析。我们强…

Android Framework WMS面试题及参考答案

什么是 WindowManagerService&#xff08;WMS&#xff09;&#xff1f;它的作用是什么&#xff1f; WindowManagerService&#xff08;WMS&#xff09;是 Android 系统中非常重要的一个系统服务。它运行在系统进程&#xff08;system_server 进程&#xff09;中。 从本质上来说…

瑞佑液晶控制芯片RA6807系列介绍 (三)软件代码详解 Part.10(让PNG图片动起来)完结篇

RA6807是RA8876M的缩小版&#xff0c;具备RA8876M的所有功能&#xff0c;只将MCU控制接口进行缩减&#xff0c;仅保留SPI-3和I2C接口&#xff0c;其它功能基本相同。 该芯片最大可控制854x600的分辨率&#xff0c;内建64Mbits显存&#xff0c;多个图层&#xff0c;使用起来相当…

vue3+echarts+ant design vue实现进度环形图

1、代码 <div> <!-- 目标环形图 --><div id"main" class"chart_box"> </div><div class"text_target">目标</div> </div>// 目标环形图 const onEcharts () > {// 基于准备好的dom&#xff0c;初…

Spark RDD 的宽依赖和窄依赖

通俗地理解 Spark RDD 的 宽依赖 和 窄依赖&#xff0c;可以通过以下比喻和解释&#xff1a; 1. 日常生活比喻 假设你在管理多个团队完成工作任务&#xff1a; 窄依赖&#xff1a;每个团队只需要关注自己的分工&#xff0c;完成自己的任务。例如&#xff0c;一个人将纸张折好&…