YOLO入门教程(三)——训练自己YOLO11实例分割模型并预测【含教程源码+一键分类数据集 + 故障排查】

目录

  • 引言
  • 前期准备
  • Step0 环境部署
    • 1.安装OpenCV
    • 2.安装Pytorch
    • 3.安装Ultralytics
  • Step1 打标训练
  • Step2 格式转换
  • Step3 整理训练集
  • Step4 训练数据集
    • 4.1创建yaml文件
    • 4.2训练
    • 4.3预测
    • 4.4故障排查
      • 4.4.1OpenCV版本故障,把OpenCV版本升级到4.0以上
      • 4.4.2NumPy版本故障,把NumPy降低版本到1.26.4
      • 4.4.3没有安装ultralytics模块
      • 4.4.4Arial.ttf下载超时
      • 4.4.5‘torchvision::nms‘
      • 4.4.6其他报错
  • 参考博客

引言

YOLO(You Only Look Once)作为一个目标检测算法,支持训练和预测实例分割模型,其标注要求是点集合和txt文件,本文教程主要介绍如何训练自己的YOLO模型,LabelMe点集标注的标签如何训练。

前期准备

在开始前建议先下载YOLO11训练源码,安装Anaconda,VSCode,LabelMe并配置好Python环境,OpenCV3.10环境,PyTorch即可开始训练自己的数据集。

Step0 环境部署

已经配置好了的可以跳过

1.安装OpenCV

下载所需版本的OpenCV包,将安装好的.whl文件拷贝到.\Anaconda3\Lib\site-packages文件夹中,并将原来的OpenCV卸载
pip uninstall opencv-python
pip uninstall opencv-contrib-python
cd .\Anaconda3\Lib\site-packages
pip install msgpack-python
pip install msgpack
pip install x.whl

2.安装Pytorch

根据CUDA版本和onnx版本选择pytorch套件

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

3.安装Ultralytics

必须要先安装CUDA版本的pytorch套件再安装YOLO环境

pip install ultralytics

Step1 打标训练

使用LabelMe软件进行打标签,会在原图路径下生成.json标签文件。
在这里插入图片描述

实例分割需要尽可能多点包围缺陷如下所示

在这里插入图片描述

Step2 格式转换

LabelMe生成的.json标签文件格式不适用于YOLO训练,需要转换格式为.txt标签文件,利用以下代码将.json标签文件归一化为YOLO可直接训练的.txt标签文件。

import json
import osclass_name =  ['background','dot','line','worn']
json_dir = './source/json'
labels_dir = './source/labels'def labelme2yolo_seg(class_name, json_dir, labels_dir):"""此函数用来将labelme软件标注好的json格式转换为yolov_seg中使用的txt格式:param json_dir: labelme标注好的*.json文件所在文件夹:param labels_dir: 转换好后的*.txt保存文件夹:param class_name: 数据集中的类别标签:return:"""list_labels = []  # 存放json文件的列表# 0.创建保存转换结果的文件夹if (not os.path.exists(labels_dir)):os.mkdir(labels_dir)# 1.获取目录下所有的labelme标注好的Json文件,存入列表中for files in os.listdir(json_dir):  # 遍历json文件夹下的所有json文件file = os.path.join(json_dir, files)  # 获取一个json文件list_labels.append(file)  # 将json文件名加入到列表中for labels in list_labels:  # 遍历所有json文件lawith open(labels, "r") as f:file_in = json.load(f)shapes = file_in["shapes"]print(labels)txt_filename = os.path.basename(labels).replace(".json", ".txt")txt_path = os.path.join(labels_dir, txt_filename)  # 使用labels_dir变量指定保存路径with open(txt_path, "w+") as file_handle:for shape in shapes:line_content = []  # 初始化一个空列表来存储每个形状的坐标信息line_content.append(str(class_name.index(shape['label'])))  # 添加类别索引# 添加坐标信息for point in shape["points"]:x = point[0] / file_in["imageWidth"]y = point[1] / file_in["imageHeight"]line_content.append(str(x))line_content.append(str(y))# 使用空格连接列表中的所有元素,并写入文件file_handle.write(" ".join(line_content) + "\n")if __name__ == '__main__':labelme2yolo_seg(class_name, json_dir, labels_dir)

json_dir替换成标签所在路径
labels_dir替换成新标签所在路径
class_name替换成标签

以上代码将Json标签转换为Txt多点标签用于实例分割训练

备注:转换后查看txt是否包含多点信息如下图所示
在这里插入图片描述

Step3 整理训练集

YOLO有数据集要求放置的格式要求,具体要求如下:

dataset/
├── train/
│ ├── images/
│ └── labels/
└── val/
├── images/
└── labels/

利用以下代码将快速将训练集整理好,划分为训练集和验证集:

import random
import shutil
import os
import shutil#通过相对路径索引到数据集
source_floder_path = './source'
# 图片目标路径
images_folder = source_floder_path + '/images'
# 定义图片尾缀
image_suffix = ['.jpg']# 标签目标路径
labels_folder = source_floder_path + '/labels'
# 定义标签尾缀
label_suffix = ['.txt']def CollateDataset(image_dir,label_dir):  # image_dir:图片路径  label_dir:标签路径# 创建一个空列表来存储有效图片的路径valid_images = []# 创建一个空列表来存储有效 label 的路径valid_labels = []# 遍历 images 文件夹下的所有图片for image_name in os.listdir(image_dir):# 获取图片的完整路径image_path = os.path.join(image_dir, image_name)# 获取图片文件的扩展名ext = os.path.splitext(image_name)[-1]# 根据扩展名替换成对应的 label 文件名label_name = image_name.replace(ext, ".txt")# 获取对应 label 的完整路径label_path = os.path.join(label_dir, label_name)# 判断 label 是否存在if not os.path.exists(label_path):# # 删除图片# os.remove(image_path)print("there is no:", label_path)else:# 将图片路径添加到列表中valid_images.append(image_path)# 将 label 路径添加到列表中valid_labels.append(label_path)# 遍历每个有效图片路径for i in range(len(valid_images)):image_path = valid_images[i]label_path = valid_labels[i]# 随机生成一个概率r = random.random()# 判断图片应该移动到哪个文件夹# train:valid:test = 8:2:0if r < 0.0:# 移动到 test 文件夹destination = "./datasets/test"elif r < 0.1:# 移动到 valid 文件夹destination = "./datasets/valid"else:# 移动到 train 文件夹destination = "./datasets/train"# 创建目标文件夹中 images 和 labels 子文件夹os.makedirs(os.path.join(destination, "images"), exist_ok=True)os.makedirs(os.path.join(destination, "labels"), exist_ok=True)# 生成目标文件夹中图片的新路径image_destination_path = os.path.join(destination, "images", os.path.basename(image_path))# 移动图片到目标文件夹shutil.copy(image_path, image_destination_path)# 生成目标文件夹中 label 的新路径label_destination_path = os.path.join(destination, "labels", os.path.basename(label_path))# 移动 label 到目标文件夹shutil.copy(label_path, label_destination_path)def CopyImagesAndLabels(path):# 遍历源文件夹中的文件for filename in os.listdir(path):print(f"FileName is {filename}")# 将路径分隔符从 '\\' 替换为 '/'filename = filename.replace('\\', '/')# 检查文件是否为图片的后缀结尾for suffix in image_suffix:#图片移动到图片路径if filename.endswith(suffix):# 拼接路径字符串source_file = os.path.normpath(os.path.join(os.getcwd(), path, filename))dest_file = os.path.normpath(os.path.join(os.getcwd(), images_folder, filename))# 复制文件if os.path.exists(source_file):try:# 复制文件# 确保目标文件夹存在,递归创建目录os.makedirs(os.path.dirname(dest_file), exist_ok=True)print(f"Copying Image {source_file} to {dest_file}")shutil.copy(source_file, dest_file)except Exception as e:print(f"Error: {e}") # 检查文件是否为标签的后缀结尾for suffix in label_suffix:#图片移动到图片路径if filename.endswith(suffix):# 拼接路径字符串source_file = os.path.normpath(os.path.join(os.getcwd(), path, filename))dest_file = os.path.normpath(os.path.join(os.getcwd(), labels_folder, filename))# 复制文件print(f"Copy Label {source_file} to {dest_file}")if os.path.exists(source_file):try:# 复制文件# 确保目标文件夹存在,递归创建目录os.makedirs(os.path.dirname(dest_file), exist_ok=True)print(f"Copying Label {source_file} to {dest_file}")shutil.copy(source_file, dest_file)print("File copied successfully!")except Exception as e:print(f"Error: {e}")# 拷贝完成print("File copied successfully!")if __name__ == '__main__':# 整理训练集CopyImagesAndLabels(source_floder_path)CollateDataset(images_folder, labels_folder)

source_floder_path替换成数据集所在路径
images_folder和labels_folder为图片集和标记集所在路径
image_suffix和label_suffix为图片集和标签集的尾缀
destination为最终训练集和验证集所在路径

以上代码只复制png和txt尾缀的数据集

备注:转换后可以在本地路径上检查是否整理成功

Step4 训练数据集

4.1创建yaml文件

在这里插入图片描述

Train/val替换成数据集所在绝对路径
Classes为标签数量与名称

4.2训练

# coding:utf-8
from ultralytics import YOLO
import torch
import cv2
import os# 模型配置文件
model_yaml_path = "./yolo11-main/ultralytics/cfg/models/11/yolo11-seg.yaml"
# 数据集配置文件
data_yaml_path = os.path.normpath(os.path.join(os.getcwd(), './yolo11-main/ultralytics/cfg/datasets/mytrain.yaml'))
# 预训练模型
pre_model_name = os.path.normpath(os.path.join(os.getcwd(), './yolo11-main/weights/yolo11s-seg.pt'))
# 模型保存路径
save_model_name = os.path.normpath(os.path.join(os.getcwd(), './yolo11-main/runs/detect/mytrain_1120'))if __name__ == '__main__':print(torch.__version__)  #注意,这里也是两个下划线print(cv2.__version__)# 加载预训练模型model = YOLO(model_yaml_path).load(pre_model_name)# 使用预训练权重结果更高 但是如果要论文的话建议不要用预训练权重# 不加载预训练模型# model = YOLOv(model_yaml_path)# 训练模型results = model.train(data=data_yaml_path, epochs=500, batch=8, name=save_model_name, imgsz=640, device='cuda:0')

data_yaml_path替换成4.1步骤下yaml的名称与路径
pre_model_name为预训练模型区别如下图

以下表格列出了训练参数解析参数及其参考含义
参数类型默认值说明
–datastrROOT/“data/coco128.yaml”数据集配置文件路径
–epochsint500训练总轮数
–batchint8所有 GPU 上的总批量大小,-1 表示自动批量大小

task:选择任务类型,可选[‘detect’, ‘segment’, ‘classify’, ‘init’]
mode: 选择是训练、验证还是预测的任务类型 可选[‘train’, ‘val’, ‘predict’]
model: 选择yolov8不同的模型配置文件,可选yolov8s.yaml、yolov8m.yaml、yolov8l.yaml、yolov8x.yaml
data: 选择生成的数据集配置文件
epochs:指的就是训练过程中整个数据集将被迭代多少次,显卡不行你就调小点。
batch:一次看完多少张图片才进行权重更新,梯度下降的mini-batch,显卡不行你就调小点。

4.3预测

from ultralytics import YOLO# Load a pretrained YOLOv10n model
# model = YOLOv10("runs/detect/train_v10/weights/best.pt")
model = YOLO("./yolo11-main/runs/detect/mytrain_1120/weights/best.pt")# Perform object detection on an image
# results = model("test1.jpg")
# results = model.predict("ultralytics/assets/bus.jpg")
results = model.predict("./source/images/8.jpg")# Display the results
results[0].show()
以下是预测的结果

在这里插入图片描述

4.4故障排查

4.4.1OpenCV版本故障,把OpenCV版本升级到4.0以上

ModuleNotFoundError: No module named ‘cv2’

下载所需版本的OpenCV包,将安装好的.whl文件拷贝到.\Anaconda3\Lib\site-packages文件夹中,并将原来的OpenCV卸载
pip uninstall opencv-python
pip uninstall opencv-contrib-python
cd .\Anaconda3\Lib\site-packages
pip install msgpack-python
pip install msgpack
pip install x.whl

出现引用cv循环情况则重装opencv-contrib-python

备注:版本cp后的数字代表了适配Python的版本。如果你的Python版本是3.9.11请务必选择cp39,其它依此类推。对于我们Windows64位系统,应当选择win_amd64系列。

4.4.2NumPy版本故障,把NumPy降低版本到1.26.4

A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.1 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with ‘pybind11>=2.12’.

pip uninstall numpy
pip install numpy==1.26.4

4.4.3没有安装ultralytics模块

New https://pypi.org/project/ultralytics/8.2.66 available 😃 Update with ‘pip install -U ultralytics’

pip install -U ultralytics

4.4.4Arial.ttf下载超时

解决yolov5环境配置报错Arial.ttf下载超时Downloading

4.4.5‘torchvision::nms‘

【问题解决】NotImplementedError: Could not run ‘torchvision::nms‘ with arguments from the ‘CUDA‘ backend
之前先执行pip install ultralytics指令再安装CUDA版本的pytorch套件

要先安装pytorch再安装yolo环境

4.4.6其他报错

其他报错可以搜索或者在YOLO官方常见问题文档中查找

参考博客

1.深度学习之目标检测从入门到精通——json转yolo格式
2.模型训练篇 | yolov10来了!手把手教你如何用yolov10训练自己的数据集(含网络结构 + 模型训练 + 模型推理等)
3.在win10下安装Anaconda环境并配置OpenCV
4.ModuleNotFoundError: No module named ‘torch‘ 解决方案
5.Labelme与YOLO标签格式互转,含实例分割和目标检测,轻松实现数据扩充

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/60368.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙系统下使用AVPlay播放视频,封装播放器

鸿蒙系统下使用AVPlay开发一款视频播放器流程 一. 申请权限 申请相关权限&#xff0c;主要是读取存储卡权限&#xff0c;方便后面扫描视频用&#xff1a; getPermission(): void {let array: Array<Permissions> [ohos.permission.WRITE_DOCUMENT,ohos.permission.REA…

编程语言05:面向对象

一、定义 使用步骤&#xff1a; 1.定义类 2.创建对象 3.调用类的属性和方法 (一)定义类 1.java 一个java文件中可以定义多个class类&#xff0c;且只能一个类是public修饰&#xff0c;而且public修饰的类名必须成为代码文件名。 实际开发中建议还是一个文件定义一个…

低速接口项目之串口Uart开发(二)——FIFO实现串口数据的收发回环测试

本节目录 一、设计思路 二、loop环回模块 三、仿真模块 四、仿真验证 五、上板验证 六、往期文章链接本节内容 一、设计思路 串口数据的收发回环测试&#xff0c;最简单的硬件测试是把Tx和Rx连接在一起&#xff0c;然后上位机进行发送和接收测试&#xff0c;但是需要考虑到串…

机器学习系列----关联分析

目录 1. 关联分析的基本概念 1.1定义 1.2常用算法 2.Apriori 算法的实现 2.1 工作原理 2.2 算法步骤 2.3 优缺点 2.4 时间复杂度 2.5实际运用----市场购物篮分析 3. FP-Growth 算法 3.1 工作原理 3.2 算法步骤 3.3 优缺点 3.4 时间复杂度 3.5实际运用——网页点…

二叉树路径相关算法题|带权路径长度WPL|最长路径长度|直径长度|到叶节点路径|深度|到某节点的路径非递归(C)

带权路径长度WPL 二叉树的带权路径长度(WPL)是二叉树所有叶节点的带权路径长度之和&#xff0c;给定一棵二叉树T&#xff0c;采用二叉链表存储&#xff0c;节点结构为 其中叶节点的weight域保存该节点的非负权值&#xff0c;设root为指向T的根节点的指针&#xff0c;设计求W…

Ubuntu ESP32开发环境搭建

文章目录 ESP32开发环境搭建安装ESP-IDF搭建一个最小工程现象 ESP32开发环境搭建 最近有个小项目需要用到能够联网的mcu驱动&#xff0c;准备玩玩esp的芯片&#xff0c;记录下ESP32开发环境搭建的过程。 ESP-IDF 是乐鑫科技为其 ESP32 系列芯片提供的官方开发框架。这个框架主…

2024.5 AAAiGLaM:通过邻域分区和生成子图编码对领域知识图谱对齐的大型语言模型进行微调

GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding 问题 如何将特定领域知识图谱直接整合进大语言模型&#xff08;LLM&#xff09;的表示中&#xff0c;以提高其在图数据上自…

《SpringBoot、Vue 组装exe与套壳保姆级教学》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…

django宠物服务管理系统

摘 要 宠物服务管理系统是一种专门为宠物主人和宠物服务提供商设计的软件。它可以帮助用户快速找到附近的宠物医院、宠物美容店、宠物寄养中心等服务提供商&#xff0c;并预订相关服务。该系统还提供了一系列实用的功能。通过使用宠物服务管理系统&#xff0c;用户可以更加方便…

docker 容器运行Ruoyi-cloud

1&#xff0c;linux系统安装openjdk1.8,mvn,dokcer,node,git 2&#xff0c;拉取代码 1&#xff09;查看gitee仓库地址 2&#xff09;创建/app文件夹&#xff0c;进入app目录 mkdir /app cd /app 3&#xff09;clone代码 4&#xff09;修改配置文件中nacos地址 # 修改注…

Linux运维篇-iscsi存储搭建

目录 概念实验介绍环境准备存储端软件安装使用targetcli来管理iSCSI共享存储 客户端软件安装连接存储 概念 iSCSI是一种在Internet协议上&#xff0c;特别是以太网上进行数据块传输的标准&#xff0c;它是一种基于IP Storage理论的存储技术&#xff0c;该技术是将存储行业广泛…

《Spring 数据访问:高效整合数据库与 ORM》

一、Spring 数据访问概述 Spring 在数据访问方面具有至关重要的地位&#xff0c;它为开发者提供了强大而高效的数据访问解决方案。 &#xff08;一&#xff09;强大的数据访问支持 Spring 提供了多种数据访问方式&#xff0c;以满足不同项目的需求。JDBC 是一种传统的数据访问…

AMD(Xilinx) FPGA配置Flash大小选择

目录 1 FPGA配置Flash大小的决定因素2 为什么选择的Flash容量大小为最小保证能够完成整个FPGA的配置呢&#xff1f; 1 FPGA配置Flash大小的决定因素 在进行FPGA硬件设计时&#xff0c;选择合适的配置Flash是我们进行硬件设计必须考虑的&#xff0c;那么配置Flash大小的选择由什…

解读缓存问题的技术旅程

目录 前言1. 问题的突发与初步猜测2. 缓存的“隐身术”3. 缓存策略的深层优化4. 反思与感悟结语 前言 那是一个普通的工作日&#xff0c;团队例行的早会刚刚结束&#xff0c;我正准备继续优化手头的模块时&#xff0c;突然收到了用户反馈。反馈的内容是部分数据显示异常&#…

Block Successive Upper Bound Minimization Method(BSUM)算法

BSUM优化方法学习 先验知识参考资料1 A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth OptimizationSUCCESSIVE UPPER-BOUND MINIMIZATION (SUM) 连续上限最小化算法THE BLOCK SUCCESSIVE UPPER-BOUND MINIMIZATION ALGORITHM 块连续上…

开源 AI 智能名片 2+1 链动模式商城小程序:场景驱动的商业创新与用户价值挖掘

摘要&#xff1a;本文围绕开源 AI 智能名片 21 链动模式商城小程序源码&#xff0c;深入分析了场景中的时间、空间、设备、社交和状态五大核心元素。阐述了各元素的表现形式、应用策略及价值&#xff0c;包括时间元素对业务周期和用户行为的影响及相应营销策略&#xff1b;空间…

【PyTorch】Pytorch中torch.nn.Conv1d函数详解

1. 函数定义 torch.nn.Conv1d 是 PyTorch 中用于一维卷积操作的类。定义如下&#xff1a; 官方文档&#xff1a;https://pytorch.ac.cn/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride1,paddi…

绿光一字线激光模组:工业制造与科技创新的得力助手

在现代工业制造和科技创新领域&#xff0c;绿光一字线激光模组以其独特的性能和广泛的应用前景&#xff0c;成为了不可或缺的关键设备。这种激光模组能够发射出一条明亮且精确的绿色激光线&#xff0c;具有高精度、高稳定性和长寿命的特点&#xff0c;为各种精密加工和测量需求…

【Linux】【Shell】Shell 基础与变量

Shell 基础 Shell 基础查看可用的 Shell判断当前 Shell 类型 变量环境变量查看环境变量临时环境变量永久环境变量PATH 变量 自定义变量特殊赋值(双引号、单引号、反撇号) 预定义变量bashrc Shell 基础 Shell 是一个用 C 语言编写的程序&#xff0c;相当于是一个翻译&#xff0c…

【SQL50】day 2

目录 1.每位经理的下属员工数量 2.员工的直属部门 3.判断三角形 4.上级经理已离职的公司员工 5.换座位 6.电影评分 7.修复表中的名字 8.患某种疾病的患者 9.删除重复的电子邮箱 1.每位经理的下属员工数量 # Write your MySQL query statement below #e1是经理&#xff0c;…