基于yolov8、yolov5的电塔缺陷检测识别系统(含UI界面、训练好的模型、Python代码、数据集)

摘要电塔缺陷检测在电力设备巡检、运行维护和故障预防中起着至关重要的作用,不仅能帮助相关部门实时监测电塔运行状态,还为智能化检测系统提供了可靠的数据支撑。本文介绍了一款基于YOLOv8、YOLOv5等深度学习框架的电塔缺陷检测模型,该模型使用了大量不同类型和状态的电塔图像进行训练,能够准确识别各种环境中的电塔缺陷。系统可在不同场景下进行检测,包括多种光照条件复杂背景电塔遮挡等。
此外,我们开发了一款带有UI界面电塔缺陷检测系统,支持实时分析电塔缺陷,并通过图形界面直观展示检测结果。系统基于PythonPyQt5开发,能够处理图片、视频及无人机实时采集的摄像头数据,检测结果可以保存以供后续分析。本文还提供了完整的Python代码及详细的使用指南,供有兴趣的读者参考,完整代码资源请见文章末尾。

项目介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8yolov8 + SE注意力机制yolov5yolov5 + SE注意力机制直接提供最少两个训练好的模型。模型十分重要,因为有些同学的电脑没有 GPU,无法自行训练。

数据集:
    网上下载的数据集,格式都已转好,可直接使用。

界面:
    PyQt5

以上是本篇博客的简单说明,添加注意力机制可作为模型的创新点

在这里插入图片描述


前言

电塔缺陷检测在现代电力巡检和设备维护中,对于提升电网运行安全和优化维护效率具有重要意义。通过快速且精准地检测电塔缺陷,电力企业和运维部门能够实时掌握电塔状态并进行缺陷修复,减少事故隐患并提高巡检效率。尤其是在智能电网和无人机巡检系统中,电塔缺陷检测技术是实现高效维护和风险管控的重要工具。同时,检测系统还能为数据分析人员提供实时数据反馈,帮助他们研究设备老化规律并制定更科学的运维计划。

电塔缺陷检测技术已经在无人机巡检、电网运维管理、设备健康监测等多个领域得到广泛应用。借助高效准确的检测系统,维护人员和管理者可以实时监测电塔缺陷,自动收集和分析故障数据,提升电网运行的安全性和稳定性。

在现代电网运维和风险管理中,电塔缺陷检测系统可以与其他智能系统协作,如设备健康监测系统、风险评估平台和故障预警系统,形成完整的智能运维解决方案,帮助电力企业更好地掌握电塔动态并优化运维流程。在大规模电网或复杂的巡检场景中,系统能够迅速检测并定位电塔缺陷,为电网安全运行和故障预防提供及时可靠的信息。

本文基于YOLOv8、YOLOv5等目标检测技术,结合Python与PyQt5开发了一款电塔缺陷检测系统。该系统支持图片、视频及无人机摄像头输入的检测,并能保存检测结果,为用户提供直观、便捷的使用体验,助力电力企业快速、有效地进行电塔缺陷排查与设备运维管理。

目录

  • 项目介绍
  • 前言
  • 功能展示:
  • 🌟 一、数据集介绍
  • 🌟 二、深度学习算法介绍
    • 1. yolov8相关介绍
    • 2. yolov5相关介绍
    • 3. PyQt5介绍
  • 🌟 四、模型训练步骤
  • 🌟 五、模型评估步骤
  • 🌟 六、训练结果
  • 结束语 🌟 🌟🌟🌟

功能展示:

部分核心功能如下:

  • 功能1: 支持单张图片识别
  • 功能2: 支持遍历文件夹识别
  • 功能3: 支持识别视频文件
  • 功能4: 支持摄像头识别
  • 功能5: 支持结果文件导出(xls格式)
  • 功能6: 支持切换检测到的目标查看

更多的其他功能可以通过下方视频演示查看。

基于深度学习的电塔缺陷检测识别系统(yolov8)


🌟 一、数据集介绍

已经分好 train、val、test文件夹,也提供转好的yolo格式的标注文件,可以直接使用。
总共 8000张数据集,
label | pic_num | box_num
绑扎不规范: (3717, 14510)
并线线夹保护壳缺失: (3317, 11285)
耐张线夹保护壳缺失: (3748, 16148)
横杆腐蚀: (987, 1556)
塔头损坏: (972, 1021)
total: (9838, 44520)

在这里插入图片描述


🌟 二、深度学习算法介绍

  本系统集成了多个不同的算法版本和界面版本,以下是对这些版本的概述:

  算法版本方面,系统提供了多种深度学习算法和传统图像处理技术,用户可以选择最合适的算法进行任务处理。此外,各算法版本经过严格的测试和优化,以提供更高的准确率和效率。

  在界面版本方面,系统设计了多种用户界面风格,可以选择简约、直观的界面,快速上手进行操作;也可以选择功能丰富的专业界面,满足复杂任务的需求。界面设计注重用户体验,确保用户在操作过程中能够方便地访问各种功能。

  此外,系统还支持实时更新和扩展,可以根随时添加新的算法模块或界面选项。这种灵活性不仅提高了系统的适用性,也为未来的技术发展预留了空间。

  总之,本系统通过多个算法和界面版本的组合,提供了丰富的选择和强大的功能。

下面是对包含到的算法的大概介绍:

1. yolov8相关介绍

  YOLOv8 是当前深度学习领域内的一个SOTA(State-Of-The-Art)模型,凭借其前代版本的技术积累,再次引领了目标检测算法的发展方向。与其前辈不同,YOLOv8在模型结构和计算方式上都做了创新性调整,旨在实现更高效的计算和更灵活的应用场景适应能力。全新的骨干网络设计,结合Anchor-Free 检测头,让模型在面对不同输入尺寸、不同目标尺度时的表现更加出色,极大提升了性能和准确性

  此外,YOLOv8 的另一个重要进步在于它采用了全新的损失函数,使得训练过程更加稳定和高效。无论是在传统的CPU平台上运行,还是在更强大的GPU平台上进行加速,YOLOv8 都能够适应不同硬件资源的场景,确保在各种场合下保持高效的推理速度精确的检测能力

  不过,值得注意的是,ultralytics 这一开发团队并没有直接将其开源库命名为 YOLOv8,而是采用了ultralytics的品牌名来命名整个项目。这并非单纯的命名策略,而是反映了其定位的重大变化。ultralytics 将这个库不仅视为一个算法框架,而非仅仅一个 YOLO 版本的延续。其设计目标之一是打造一个能够适应不同任务的算法平台,无论是目标检测、分类、分割,还是姿态估计,都能够在这个框架中被高效地支持。

  这也意味着,未来的ultralytics 开源库将不仅限于 YOLO 系列,它的可扩展性为用户提供了更大的可能性。无论是使用非 YOLO 系列模型,还是面对不同应用领域的特定需求,ultralytics都提供了灵活且高效的解决方案

总的来说,ultralytics 开源库 的优势可以归纳为以下几个要点:

  • 融合当前最前沿的深度学习技术,让用户可以轻松实现复杂的计算任务。

  • 具有极高的扩展性,未来将不仅支持 YOLO 系列,还会支持更多非 YOLO 的算法,适用于广泛的任务场景。

如此一来,ultralytics 不仅能够帮助开发者在算法研究工程应用上取得突破,更能推动未来智能视觉领域的进一步发展。

在这里插入图片描述

网络结构如下:
在这里插入图片描述

2. yolov5相关介绍

  YOLOV5有YOLOv5n,YOLOv5s,YOLOv5m,YOLOV5l、YOLO5x五个版本。这个模型的结构基本一样,不同的是deth_multiole模型深度和width_multiole模型宽度这两个参数。就和我们买衣服的尺码大小排序一样,YOLOV5n网络是YOLOV5系列中深度最小,特征图的宽度最小的网络。其他的三种都是在此基础上不断加深,不断加宽。不过最常用的一般都是yolov5s模型。
在这里插入图片描述

  本系统采用了基于深度学习的目标检测算法YOLOv5,该算法是YOLO系列算法的较新版本,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题。此外,YOLOv5还引入了一种称为SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。

  在YOLOv5中,首先将输入图像通过骨干网络进行特征提取,得到一系列特征图。然后,通过对这些特征图进行处理,将其转化为一组检测框和相应的类别概率分数,即每个检测框所属的物体类别以及该物体的置信度。YOLOv5中的特征提取网络使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。

在这里插入图片描述

  在YOLOv5中,每个检测框通过其左上角坐标(x, y)、宽度(w)、高度(h)以及置信度confidence)来表示。此外,YOLOv5对于每个检测框还会预测C个类别的概率得分,每个类别的概率得分总和为1。这意味着每个检测框最终可以被表示为一个维度为(C+5)的向量,包括类别概率、位置和置信度信息。

  在训练过程中,YOLOv5使用了交叉熵损失函数来优化模型,该损失函数由定位损失置信度损失分类损失三个部分组成。YOLOv5还采用了Focal LossIoU Loss等优化方法,以缓解正负样本不平衡目标尺寸变化等问题。这些优化不仅提高了模型的准确性,还改善了在不同尺寸目标下的表现。

  从网络结构来看,YOLOv5分为四个主要部分:Input(输入)、Backbone(骨干网络)、Neck(颈部结构)和Prediction(预测)。其中,Input部分负责将数据引入网络,采用了Mosaic数据增强技术,能够通过随机裁剪和拼接输入图片,进一步提升网络的泛化能力。

  Backbone部分是YOLOv5提取图像特征的关键模块,其特征提取能力直接影响了整个模型的性能表现。相比前代YOLOv4,YOLOv5在Backbone中引入了Focus结构。Focus结构通过切片操作将图片的宽度(W)高度(H)信息转移到通道空间中,从而实现了2倍的下采样操作,同时保证了不丢失关键信息。

3. PyQt5介绍

  PyQt5 是 Python 语言的一个图形用户界面(GUI)开发框架,基于 Qt库 开发而成。Qt 是一个广泛使用的跨平台 C++ 图形库,支持开发适用于 Windows、macOS、Linux 等多个操作系统的应用程序。PyQt5 提供了对 Qt 类库的完整封装,使开发者可以使用 Python 语言构建功能强大、界面美观的桌面应用。

  PyQt5 包含了丰富的组件,如窗口、按钮、文本框、表格等,可以通过拖拽和代码的方式快速布局,极大地简化了 GUI 开发流程。同时,它还支持 事件处理信号与槽机制,使得用户与界面之间的交互更加灵活。

  通过 PyQt5,开发者能够轻松实现跨平台桌面应用,同时结合 Python 的易用性和 Qt 的强大功能,既适合初学者学习 GUI 编程,也适合资深开发者进行复杂项目的开发。


🌟 四、模型训练步骤

  1. 使用pycharm打开代码,找到train.py打开,示例截图如下:
    在这里插入图片描述

  2. 修改 model_yaml 的值,以符合实际情况。如果你打算训练 YOLOv8s 模型,请将其修改为 model_yaml = yaml_yolov8s。如果你想训练添加 SE注意力机制 的模型,请将其修改为 model_yaml = yaml_yolov8_SE

  3. 修改 data_path 的数据集路径。这里默认指定的是 traindata.yaml 文件。如果你使用的是我提供的数据,可以不用修改。

  4. 修改 model.train() 中的参数,根据自己的需求和电脑硬件的情况进行调整。

    # 文档中对参数有详细的说明
    model.train(data=data_path,             # 数据集imgsz=640,                  # 训练图片大小epochs=200,                 # 训练的轮次batch=2,                    # 训练batchworkers=0,                  # 加载数据线程数device='0',                 # 使用显卡optimizer='SGD',            # 优化器project='runs/train',       # 模型保存路径name=name,                  # 模型保存命名)
    
  5. 修改traindata.yaml文件, 打开 traindata.yaml 文件,如下所示:
    在这里插入图片描述
    在这里,只需修改 path 的值,其他的都不用改动(仔细看上面的黄色字体),我提供的数据集默认都是到 yolo 文件夹,设置到 yolo 这一级即可,修改完后,返回 train.py 中,执行train.py

  6. 打开 train.py ,右键执行。
    在这里插入图片描述

  7. 出现如下类似的界面代表开始训练了
    在这里插入图片描述

  8. 训练完后的模型保存在runs/train文件夹下
    在这里插入图片描述


🌟 五、模型评估步骤

  1. 打开val.py文件,如下图所示:
    在这里插入图片描述

  2. 修改 model_pt 的值,是自己想要评估的模型路径

  3. 修改 data_path ,根据自己的实际情况修改,具体如何修改,查看上方模型训练中的修改步骤

  4. 修改 model.val()中的参数,按照自己的需求和电脑硬件的情况更改

    model.val(data=data_path,           # 数据集路径imgsz=300,                # 图片大小,要和训练时一样batch=4,                  # batchworkers=0,                # 加载数据线程数conf=0.001,               # 设置检测的最小置信度阈值。置信度低于此阈值的检测将被丢弃。iou=0.6,                  # 设置非最大抑制 (NMS) 的交叉重叠 (IoU) 阈值。有助于减少重复检测。device='0',               # 使用显卡project='runs/val',       # 保存路径name='exp',               # 保存命名)
    
  5. 修改完后,即可执行程序,出现如下截图,代表成功(下图是示例,具体以自己的实际项目为准。)
    在这里插入图片描述

  6. 评估后的文件全部保存在在 runs/val/exp... 文件夹下
    在这里插入图片描述


🌟 六、训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述

   如果大家对于上面生成的这些内容(confusion_matrix.png、results.png等)不清楚是什么意思,可以参考一下我写的文档,查看这些指标的具体含义,示例截图如下:

在这里插入图片描述


结束语 🌟 🌟🌟🌟

   下面图片是对每个文件夹作用的介绍:

在这里插入图片描述

其实用yolo算法做系统非常的简单,但是博客文字有限,如果有介绍不明白的地方,也可以看一下下面的视频,也许会更容易理解。

视频里介绍了,如何进行训练、预测,简单修改界面等。

演示与介绍视频: 【基于深度学习的电塔缺陷检测识别系统(yolov8)】

演示与介绍视频:【基于深度学习的电塔缺陷检测识别系统(yolov5)】

由于博主的能力有限,文中提到的方法虽经过实验验证,但难免存在一些不足之处。为不断提升内容的质量与准确性,欢迎您指出任何错误和疏漏。这不仅将帮助我在下次更新时更加完善和严谨,也能让其他读者受益。您的反馈对我至关重要,能够推动我进一步完善相关内容。

此外,如果您有更优秀的实现方案或独到的见解,也非常欢迎分享。这将为大家提供更多思路与选择,促进我们共同的成长与进步。期待您的宝贵建议与经验交流,非常感谢您的支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/60199.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蒙特卡洛模拟 详解

蒙特卡洛模拟详解 蒙特卡洛模拟(Monte Carlo Simulation) 是一种利用随机抽样和统计计算来模拟复杂系统或过程的方法。它尤其适用于分析不确定性、复杂数学问题以及概率分布模型。 蒙特卡洛模拟的基本原理 蒙特卡洛模拟的核心思想是通过 重复随机采样 …

代理商培训新策略:内部知识库的高效运用

在竞争激烈的市场环境中,代理商作为企业与终端消费者之间的关键纽带,其专业能力和服务质量直接影响着企业的市场表现和品牌形象。因此,如何对代理商进行高效、系统的培训,以提升其业务能力和服务水平,成为企业亟需解决…

C++手写PCD文件

前言 一般pcd读写只需要调pcl库接口,直接用pcl的结构写就好了 这里是不依赖pcl库的写入方法 主要是开头写一个header 注意字段大小,类型不要写错     结构定义 写入点需要与header中定义一致 这里用的RoboSense的结构写demo 加了个1字节对齐 stru…

Spring 框架中哪些接口可以创建对象

Spring 框架中哪些接口可以创建对象 在 Spring 框架中,向 IOC 容器中添加 Bean 主要有以下几种接口和方式。Spring 提供了不同的手段来实现对象的创建和管理,涵盖了不同的需求和场景。以下是几种常用的接口和方式: 1. BeanFactory 接口 Be…

uniapp 相关的swiper的一些注意事项

先推荐一个一个对标pc端swiper的uniapp版本 zebra-swiper 缺点是自定义分页器不是很好处理 不知道怎么弄 优点:可以进行高度自适应 &#xff08;这个uniapp原生swiper没有 只能动态修改 采用js 或者只有几种固定高度时采用变量修改&#xff09; <swiperref"lifeMiddle…

ARM中ZI-data段和RW-data段

ARM中ZI-data段和RW-data段 1、只定义全局变量&#xff0c;不使用&#xff0c;不占用内存空间2、 定义并初始化全局变量为0 占用ZI-Data区域3、定义并初始化全局变量非0 占用RW-Data区域4、增加的是一个int8的数据为什么&#xff0c;size增加不是15、定义的全局变量为0&#xf…

jmeter--CSV数据文件设置--请求体设置变量

目录 一、示例 1、准备组织列表的TXT文件&#xff0c;如下&#xff1a; 2、添加 CSV数据文件设置 &#xff0c;如下&#xff1a; 3、接口请求体设置变量&#xff0c;如下&#xff1a; 二、CSV数据文件设置 1、CSV Data Set Config 配置选项说明 2、示例 CSV 文件内容 3、…

golang实现TCP服务器与客户端的断线自动重连功能

1.服务端 2.客户端 生成服务端口程序: 生成客户端程序: 测试断线重连: 初始连接成功

ssm148基于Spring MVC框架的在线电影评价系统设计与实现+jsp(论文+源码)_kaic

毕 业 设 计&#xff08;论 文&#xff09; 题目&#xff1a;在线电影评价系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本在线电影评价系…

DAY1 网络编程(TCP客户端服务器)

作业&#xff1a; TCP客户端服务器。 server服务器代码&#xff1a; #include <myhead.h> #define IP "192.168.110.52" #define PORT 8886 #define BACKLOG 20 int main(int argc, const char *argv[]) {int oldfdsocket(AF_INET,SOCK_STREAM,0);//IPV4通信…

基于arduino 用ESP8266获取实时MAX30102 血氧数据动态曲线显示在网页上

基于arduino 用ESP8266获取实时MAX30102 血氧数据动态曲线显示在网页上 原理&#xff1a; ESP8266获取MAX30102 血氧数据&#xff08;R,IR,G的值&#xff09;发送到路由器局域网内&#xff0c;局域网内的手机电脑&#xff0c;访问ESP的ip地址&#xff0c;获取实时的血氧数据动…

OpenCV DNN

OpenCV DNN 和 PyTorch 都是常用的深度学习框架&#xff0c;但它们的定位、使用场景和功能有所不同。让我们来对比一下这两个工具&#xff1a; 1. 框架和功能 OpenCV DNN&#xff1a;OpenCV DNN 模块主要用于加载和运行已经训练好的深度学习模型&#xff0c;支持多种深度学习…

vue3:scss引用

原文查看&#xff1a;https://mp.weixin.qq.com/s?__bizMzg3NTAzMzAxNA&mid2247484356&idx2&sn44b127cd394e217b9e3c4eccafdc0aa9&chksmcec6fb1df9b1720b7bd0ca0b321bf8a995fc8cba233deb703512560cbe451cfb1f05cdf129f6&token1776233257&langzh_CN#rd…

在使用 TypeORM 的项目中,如果不希望查询返回 password 字段,可以通过以下几种方式实现

在使用 TypeORM 的项目中&#xff0c;如果不希望查询返回 password 字段&#xff0c;可以通过以下几种方式实现&#xff1a; 1. 使用 Exclude 装饰器&#xff08;推荐&#xff09; 通过 class-transformer 的 Exclude 装饰器隐藏字段&#xff0c;使得返回的对象在序列化时不会…

Gentoo的软件包管理机制学习笔记

Gentoo的软件包被mask锁定主要是出于以下几个原因&#xff1a; 防止安装可能导致系统不稳定的软件包&#xff1a;有时候&#xff0c;新的软件版本可能存在问题&#xff0c;或者与当前系统不兼容&#xff0c;为了防止这些问题影响系统的稳定性&#xff0c;开发者会将这些软件包m…

SrpingBoot基础

SpringBoot基本框架中重要常用的包讲解: .idea包和.mvn包框架生成不经常用 src包下主要存放前后端代码: main包下的java包存放的是后端java代码主要负责数据处理 resource包下存放的是配置资源和前端页面,其中static中存放的是前端html网页一般存放静 态资源,templates包…

Nacos实现IP动态黑白名单过滤

一些恶意用户&#xff08;可能是黑客、爬虫、DDoS 攻击者&#xff09;可能频繁请求服务器资源&#xff0c;导致资源占用过高。因此我们需要一定的手段实时阻止可疑或恶意的用户&#xff0c;减少攻击风险。 本次练习使用到的是Nacos配合布隆过滤器实现动态IP黑白名单过滤 文章…

vue-next-admin框架配置(vue)

vue-next-admin 先安装依赖 npm i 依赖, npm run dev 运行 1.配置代理 2.把他的逻辑和自己的登录判断逻辑结合(我的放下面&#xff0c;可以参考哦&#xff0c;可以直接使用&#xff0c;到时候修改登录逻辑就好)&#xff0c;别忘了引入ajxio哦 const onSignIn async () &g…

算法定制LiteAIServer视频智能分析平台工业排污检测算法智控环保监管

随着工业化进程的加快&#xff0c;环境污染问题愈加严重&#xff0c;尤其是工业排污对生态环境的影响引发了广泛关注。在此背景下&#xff0c;视频智能分析平台LiteAIServer工业排污检测算法应运而生&#xff0c;作为一种先进的智能化解决方案&#xff0c;它在监测和管理工业排…

使用 Postman 设置 Bearer Token 进行身份验证

学习笔记 1. 打开 Postman 并创建新请求 打开 Postman。 在左上角点击 按钮&#xff0c;创建一个新的请求。 2. 选择 HTTP 方法 在请求类型&#xff08;默认为 GET&#xff09;旁边的下拉菜单中&#xff0c;选择你需要的 HTTP 方法&#xff0c;如 POST、GET、PUT 等。 3…