卷积、频域乘积和矩阵向量乘积三种形式之间的等价关系与转换

线性移不变系统

线性移不变系统(Linear Time-Invariant System, LTI系统)同时满足线性和时不变性两个条件。

  1. 线性:如果输入信号的加权和通过系统后,输出是这些输入信号单独通过系统后的输出的相同加权和,那么该系统就是线性的。数学上,对于任意输入信号 x 1 ( t ) x_1(t) x1(t) x 2 ( t ) x_2(t) x2(t),以及任意常数 a a a b b b,如果系统满足:
    y ( t ) = a ⋅ h ( x 1 ( t ) ) + b ⋅ h ( x 2 ( t ) ) y(t) = a \cdot h(x_1(t)) + b \cdot h(x_2(t)) y(t)=ah(x1(t))+bh(x2(t))
    其中 h ( ⋅ ) h(\cdot) h()表示系统对输入的响应,则该系统是线性的。

  2. 时不变性:如果一个系统的输入信号延迟一段时间后,其输出仅仅是原输出信号同样延迟的时间,而没有其他变化,那么该系统就是时不变的。即,对于任意输入信号 x ( t ) x(t) x(t)及其延迟版本 x ( t − τ ) x(t - \tau) x(tτ),系统的输出也仅仅是 y ( t ) y(t) y(t)延迟了 τ \tau τ时间单位的版本 y ( t − τ ) y(t - \tau) y(tτ)

LTI系统的一个重要性质是,它们可以通过卷积来描述。具体来说,如果 h ( t ) h(t) h(t)是系统的冲激响应(即当输入为单位脉冲时系统的输出), x ( t ) x(t) x(t)是系统的输入信号,那么系统的输出 y ( t ) y(t) y(t)可以通过输入信号与冲激响应的卷积来计算:
y ( t ) = ( x ∗ h ) ( t ) = ∫ − ∞ ∞ x ( τ ) h ( t − τ ) d τ y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau y(t)=(xh)(t)=x(τ)h(tτ)dτ

这个卷积公式表示,LTI系统的输出是输入信号与系统冲激响应之间的一种加权平均。这一性质使得LTI系统在理论分析和实际应用中都变得极其重要,尤其是在滤波器设计、通信系统、图像处理等领域。通过理解系统的冲激响应,可以预测系统对任何输入信号的响应。

卷积还可以写成频域乘积和矩阵向量乘积两种形式。

在这里插入图片描述

三者之间的等价关系与转换

时域卷积到频域乘积

①→②和②→①根据卷积定理,时域中的卷积对应于频域中的乘积。时域卷积通常用于理论分析,而频域乘积则更常用于实际计算,尤其是当信号长度较长时,通过快速傅里叶变换(FFT)实现的频域乘积可以显著提高计算效率。

  1. 傅里叶变换:首先对输入信号 x ( t ) x(t) x(t)和冲激响应 h ( t ) h(t) h(t)进行傅里叶变换,得到它们的频域表示 X ( f ) X(f) X(f) H ( f ) H(f) H(f)
    X ( f ) = F { x ( t ) } X(f) = \mathcal{F}\{x(t)\} X(f)=F{x(t)}
    H ( f ) = F { h ( t ) } H(f) = \mathcal{F}\{h(t)\} H(f)=F{h(t)}
    这里是psf2otf,解释见这里。
  2. 频域乘积:在频域中,将 X ( f ) X(f) X(f) H ( f ) H(f) H(f)相乘,得到输出信号的频域表示 Y ( f ) Y(f) Y(f)
    Y ( f ) = X ( f ) H ( f ) Y(f) = X(f) H(f) Y(f)=X(f)H(f)
  3. 逆傅里叶变换:对 Y ( f ) Y(f) Y(f)进行逆傅里叶变换,得到输出信号 y ( t ) y(t) y(t)
    y ( t ) = F − 1 { Y ( f ) } y(t) = \mathcal{F}^{-1}\{Y(f)\} y(t)=F1{Y(f)}

在这里插入图片描述
在这里插入图片描述

时域卷积到矩阵向量乘积

①→③对于有限长的离散信号,卷积可以完全等价地用矩阵向量乘积来表示。这种方法在实现离散信号处理算法时非常有用,它可以利用线性代数来进行表示和计算。

  1. 构建卷积矩阵:根据冲激响应 h [ n ] h[n] h[n],构建卷积矩阵 H \mathbf{H} H。假设 x [ n ] x[n] x[n]的长度为 N N N h [ n ] h[n] h[n]的长度为 M M M,则 H \mathbf{H} H是一个 ( N + M − 1 ) × N (N+M-1) \times N (N+M1)×N的矩阵。
    H = [ h [ 0 ] 0 ⋯ 0 h [ 1 ] h [ 0 ] ⋯ 0 ⋮ ⋮ ⋱ ⋮ h [ M − 1 ] h [ M − 2 ] ⋯ h [ 0 ] 0 h [ M − 1 ] ⋯ h [ 1 ] ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ h [ M − 1 ] ] \mathbf{H} = \begin{bmatrix} h[0] & 0 & \cdots & 0 \\ h[1] & h[0] & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ h[M-1] & h[M-2] & \cdots & h[0] \\ 0 & h[M-1] & \cdots & h[1] \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & h[M-1] \end{bmatrix} H= h[0]h[1]h[M1]000h[0]h[M2]h[M1]000h[0]h[1]h[M1]
  2. 矩阵向量乘积:将输入信号 x [ n ] x[n] x[n]表示为列向量 x \mathbf{x} x,计算输出向量 y \mathbf{y} y
    y = H x \mathbf{y} = \mathbf{H} \mathbf{x} y=Hx
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

矩阵向量乘积到时域卷积

③→①对于一个 n × n n \times n n×n的循环矩阵 C C C和一个 n n n维向量 x x x,计算 C x Cx Cx的过程实际上是一个卷积操作。设 c c c C C C的第一列,那么 C x Cx Cx等价于将 c c c x x x进行循环卷积。

  1. 提取冲激响应:从卷积矩阵 H \mathbf{H} H中提取冲激响应 h [ n ] h[n] h[n]。通常, H \mathbf{H} H的第一行或第一列就是 h [ n ] h[n] h[n]
  2. 计算卷积:使用提取的 h [ n ] h[n] h[n]和输入信号 x [ n ] x[n] x[n]计算卷积。
    y [ n ] = ( x ∗ h ) [ n ] = ∑ k = 0 M − 1 x [ n − k ] h [ k ] y[n] = (x * h)[n] = \sum_{k=0}^{M-1} x[n-k] h[k] y[n]=(xh)[n]=k=0M1x[nk]h[k]

矩阵向量乘积到频域乘积

③→②[循环矩阵和BCCB矩阵的对角化,即特征值分解,特征值是傅里叶系数,特征向量是傅里叶变换基。](https://blog.csdn.net/u013600306/article/details/143728757?spm=1001.2014.3001.5501)

总结

  • 时域卷积频域乘积 通过傅里叶变换和逆傅里叶变换相互转换。
  • 时域卷积矩阵向量乘积 通过构建卷积矩阵实现相互转换。
  • 矩阵向量乘积时域卷积 通过提取卷积矩阵中的冲激响应实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/59827.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于51单片机的电子钟+秒表LCD1602仿真设计

电子钟秒表 0. 设计资料内容清单&&下载链接1. 主要功能:2. 讲解视频:3. 仿真4. 程序代码5. 设计报告6. 原理图 基于51单片机的电子钟秒表LCD1602仿真设计( proteus仿真程序设计报告原理图讲解视频) 仿真图proteus7.8及以上 程序编译…

unity 3d到idea

第一步,确保jdk,sdk,gradle版本一致 unity 3d的配置 idea配置 第二步,整个unity导出安卓项目到idea idea配置项目(修改gradl配置) gradle配置代码 distributionUrlhttps\://services.gradle.org/distributions/gradle-8.7-bin.z…

通过地址获取LONG和LAT并且存入csv

通过地址获取LONG和LAT并且存入csv 1. Address存在Address这个column里,从网上复制(如果可以爬虫自动更好) 2. 用代码获取GPS,再存入表格 import pandas as pd from geopy.geocoders import Nominatim from time import sleep#…

【日志】binlog 文件的三种格式类型

MySQL 的 binlog(binary log) 是一种日志文件,它记录了所有对数据库的数据更改操作,包括插入、更新、删除等。 主用于主从复制和数据恢复等操作。 binlog 文件的格式有三种主要类型:STATEMENT、ROW 和 MIXED。 1. STA…

微信小程序的云函数

微信小程序的云开发中,云函数是一种运行在云端的 Node.js 函数,它允许开发者在云端执行代码,而无需自己搭建服务器。编写云函数时,需要遵循一定的思维模式来确保代码的安全性、效率和可维护性。以下是编写云函数时的一些关键思维&…

要查看你的系统是 x64(64位)还是 x86(32位),可以按照以下步骤操作

文章目录 1. 通过“系统信息”查看系统架构2. 通过“设置”查看系统架构3. 通过命令提示符查看系统架构4. 通过 PowerShell 查看系统架构5. 通过文件资源管理器查看系统架构总结 要查看你的系统是 x64(64位)还是 x86(32位)&…

ARM 汇编指令

blr指令的基本概念和用途 在 ARM64 汇编中,blr是 “Branch with Link to Register” 的缩写。它是一种分支指令,主要用于跳转到一个由寄存器指定的地址,并将返回地址保存到链接寄存器(Link Register,LR)中。…

跟李笑来学美式俚语(Most Common American Idioms): Part 11

Most Common American Idioms: Part 11 前言 本文是学习李笑来的Most Common American Idioms这本书的学习笔记,自用。 Github仓库链接:https://github.com/xiaolai/most-common-american-idioms 使用方法: 直接下载下来(或者clone到本地…

手机ip地址异常怎么解决

在现代社会中,手机已成为我们日常生活中不可或缺的一部分,无论是工作、学习还是娱乐,都离不开网络的支持。然而,有时我们会遇到手机IP地址异常的问题,这不仅会影响我们的网络体验,还可能带来安全隐患。本文…

validate简单入门

validate第三方验证库 介绍: 在我们的平常业务中难免会遇到参数验证的情况,这就不免需要我们手动的为每组参数写一段代码:是否满足某种参数数据的传输格式(json、xml等)、是否满足参数字段的格式(长度、字…

【Linux系统编程】第四十七弹---深入探索:POSIX信号量与基于环形队列的生产消费模型实现

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】 目录 1、POSIX信号量 2、基于环形队列的生产消费模型 2.1、代码实现 2.1.1、RingQueue基本结构 2.1.2、PV操作 2.1.3、构造析构…

炼码LintCode--数据库题库(级别:入门;数量:144道)--刷题笔记_01

目录 炼码LintCode--数据库题库(级别:入门;数量:144道)--刷题笔记_01入门级别的笔记CRUD基本函数及语法汇总事务锁视图 炼码LintCode–数据库题库(级别:入门;数量:144道&…

.length和.length()有什么区别?什么情况下使用哪个?

在编写程序的时候,我们经常发现有时候需要得到长度的时候我们使用函数.length,而有的时候用的却是.length()。 在对Java一知半解的时候,我曾产生了深深的疑惑,到底这两个有什么区别,为什么有时候要有括号,而…

本地部署Apache Answer搭建高效的知识型社区并一键发布到公网流程

文章目录 前言1. 本地安装Docker2. 本地部署Apache Answer2.1 设置语言选择简体中文2.2 配置数据库2.3 创建配置文件2.4 填写基本信息 3. 如何使用Apache Answer3.1 后台管理3.2 提问与回答3.3 查看主页回答情况 4. 公网远程访问本地 Apache Answer4.1 内网穿透工具安装4.2 创建…

Argo workflow 拉取git 并使用pvc共享文件

文章目录 拉取 Git 仓库并读取文件使用 Kubernetes Persistent Volumes(通过 volumeClaimTemplates)以及任务之间如何共享数据 拉取 Git 仓库并读取文件 在 Argo Workflows 中,如果你想要一个任务拉取 Git 仓库中的文件,另一个任…

Go 语言切片初始化与性能优化:使用 cap 参数的重要性

在 Go 语言中,切片是一种非常灵活且常用的数据结构,它提供了一种动态数组的抽象。在使用切片时,我们通常会使用 append 函数来添加元素。然而,很少有人意识到在初始化切片时指定其容量(capacity)可以显著提…

uniapp h5地址前端重定向跳转

简单说下功能,就是在地址输入http://localhost:8080/home 会自行跳转到http://localhost:8080/pages/home/index,如果有带参数的话也会携带上去。 ps:只能在h5中使用 首先需要用到query-string 安装query-string npm install query-string…

Jmeter中的后置处理器(三)

9--XPath2 Extractor 功能特点 数据提取:使用 XPath2 表达式从 XML 响应中提取特定的数据。动态参数传递:将提取的数据存储为变量,供后续请求使用。支持丰富的表达式:支持复杂的 XPath2 表表达式,提供丰富的数据提取…

【MySQL-1】MySQL数据库的基本操作

目录 1. 整体学习思维导图 2. 数据库的创建 2.1 创建一个数据库 2.2 创建一个指定字符集和校验规则的数据库 3. 字符集和校验规则 3.1 查看系统默认字符集以及校验规则 3.2 查看数据库所支持的字符集和校验规则 3.3 不同校验规则所带来的影响 4. 操作数据库 4.1查…

React Native 全栈开发实战班 - 图片加载与优化

在移动应用中,图片加载与优化 是提升用户体验和减少资源消耗的重要环节。图片加载不当可能导致应用卡顿、内存泄漏甚至崩溃。本章节将介绍 React Native 中常用的图片加载方法,包括 Image 组件的使用、第三方图片加载库(如 react-native-fast…