使用 Azure OpenAI 服务对数据进行联合 SharePoint 搜索

作者:来自 Elastic  Gustavo Llermaly

使用 Azure OpenAI 服务处理你的数据,并使用 Elastic 作为向量数据库。

在本文中,我们将探索 Azure OpenAI 服务 “On Your Data”,使用 Elasticsearch 作为数据源。我们将使用 Elastic Sharepoint Online Native 连接器来索引我们的 Sharepoint 文档并使其保持同步。

假设我们有一个 Sharepoint 网站,其中包含有关公司和员工的信息,我们想使用自定义应用程序与其聊天。设计和开发该架构通常需要一些时间。你必须负责提取,然后设置搜索引擎,然后配置 RAG 系统,该系统从数据源读取并将信息传递给 LLM 以回答问题。幸运的是,我们可以使用 Elastic 和 Azure 来加快这一速度!

步骤

  • 设置 Sharepoint 连接器
  • 设置 Azure OpenAI 服务
  • 高级用法
  • 文档级安全性 (DLS)

设置 Sharepoint 连接器

我们将创建一个包含以下文档的 Sharepoint 站点:

PE_Payslip.docx

该文件包含有关 Planet Express 公司的公开信息。

PE_Payslip.docx

这份文件包含 Planet Express 的工资单,具体来说是 CEO 的工资。我们不想让每个人都知道这些信息。

为了将我们的站点文档导入 Elastic,然后在添加或修改文件时保持它们同步,我们将使用 Elastic Sharepoint Online 连接器。第一步是准备好你的 Sharepoint 环境。你可以在此处找到有关如何设置的详细说明。

创建和配置 Sharepoint Online 应用程序后,你可以继续在 Elastic 中创建连接器索引:

创建 SharePoint Online 连接器

下一步是使用 Kibana Content UI 对文档主体进行向量化,以便我们可以对它们运行向量搜索:

创建向量字段

我们将使用 Elastic 的开箱即用的 e5-multilingual 模型,但你可以加入任何你想要的兼容嵌入模型,或者通过 Open Inference Service 使用 OpenAI 等外部提供商。你也可以重复此过程,并根据需要添加更多字段。

配置连接器索引后,我们可以运行同步以开始索引文档:

如果一切顺利,你应该会在 “Documents” 选项卡中看到你的文档:

默认情况下,连接器将提取不同类型的文档,如列表、列表项和网站。在本文中,我们只对文档感兴趣,因此让我们在连接器中应用过滤器来实现此目的。

此过滤器将排除列表和与集合相关的文档。你必须运行完整内容同步才能应用此过滤器。

设置 Azure OpenAI 服务

最简单的设置是转到 Azure AI Studio,并添加 Elasticsearch 作为聊天数据源:

选中自定义映射复选框以与连接器设置保持一致

我们可以在 keyword 或 vector 之间进行选择,让我们从 keyword 开始。

现在我们可以将连接器的映射与 Azure 将用于查询的字段对齐。

我们可以开始对我们的文档提问了!让我们开始询问有关 Planet Express 的问题:

我们可以开始对我们的文件提出问题了!让我们开始询问 Planet Express:

如果我们询问 CEO 的薪水怎么办?

我们可能不想公开这些信息。

让我们解决这个问题!

高级用法

Azure AI Studio 聊天并不是使用此服务的唯一方式。Azure OpenAI On Your Data 可以部署到 Copilot、Teams 或使用 API/SDK。我们将采用后者。

先决条件

  • 配置从用户到 Azure OpenAI 资源的角色分配。所需角色:Cognitive Services OpenAI User。
  • 安装 Az CLI 并运行 az login。选择你的订阅后,将打开一个网页以对你进行身份验证。
  • 定义以下变量:AzureOpenAIEndpoint、ChatCompletionsDeploymentName、SearchEndpoint、IndexName、Key。

要查找 AzureOpenAIEndpoint、ChatCompletionsDeploymentName,你可以单击聊天中的 “View Code” 选项卡:

从这里复制 endpoint 和 deployment 值。

SearchEndpoint、IndexName、Key 是 Elasticsearch URL、索引名称和 API 密钥。

我们将使用 python。首先安装所需的依赖项:

pip install openai azure-identity

现在添加你收集的值。你也可以将它们存储为环境变量:

import os
from openai import AzureOpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_providerendpoint = os.getenv("ENDPOINT_URL", "<Endpoint_value>")
deployment = os.getenv("DEPLOYMENT_NAME", "<Deployment_value")
index_name = os.environ.get("IndexName", "sharepoint-labs")
search_endpoint = os.environ.get("SearchEndpoint", "<Elasticsearch_endpoint")
key = os.environ.get("Key", "<Elasticsearch_ApiKey>")

现在让我们继续将 API 调用添加到文件中:

token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")client = AzureOpenAI(azure_endpoint=endpoint,azure_ad_token_provider=token_provider,api_version="2024-02-15-preview",
)completion = client.chat.completions.create(model=deployment,messages=[{"role": "user","content": "What is the CEO salary?",},],extra_body={"data_sources": [{"type": "elasticsearch","parameters": {"endpoint": search_endpoint,"index_name": index_name,"authentication": {"type": "encoded_api_key","encoded_api_key": key}},"query_type": "simple","fields_mapping": {"content_fields_separator": "\n","content_fields": ["body"],"filepath_field": "name","title_field": "Title","url_field": "webUrl","vector_fields": ["ml.inference.body.predicted_value"]},}]}
)print(completion.model_dump_json(indent=2))

运行脚本:

python myscript.py

我们得到了相同的答案。

{"id": "01b421b9-212c-4a95-b4b8-072bbd2972dc","choices": [{"finish_reason": "stop","index": 0,"logprobs": null,"message": {"content": "The CEO's salary is 1 jillion per month .","refusal": null,"role": "assistant","function_call": null,"tool_calls": null,"end_turn": true,"context": {"citations": [{"content": "https://1fbkbs.sharepoint.com/_layouts/15/download.aspx?UniqueId=51621a8b-cede-4396-b42c-7f4bd54607b6&amp;Translate=false&amp;tempauth=v1.eyJzaXRlaWQiOiJiN2Q3NzBjMC03ZTgwLTQ5OTMtOTZjZC1hOGY3YjMxZWUyYmQiLCJhcHBfZGlzcGxheW5hbWUiOiJzcC1sYWJzIiwiYXVkIjoiMDAwMDAwMDMtMDAwMC0wZmYxLWNlMDAtMDAwMDAwMDAwMDAwLzFmYmticy5zaGFyZXBvaW50LmNvbUA5MTVkYzNkOS04NTI2LTRhODYtYTc4My02MDc1OTVkMzMxZjUiLCJleHAiOiIxNzI3OTY1MTczIn0.CgoKBHNuaWQSAjQ4EgsI-Jr32YHusT0QBRoNMjAuMTkwLjEzMi40MCosdW02Ym9VYzVMdTZGRXNuc1hrL2UwenA3QW1iWFRlM1BkQUovd2RTakNHbz0wdTgBQhChVktf74AAYI8XRwPrhkUMShBoYXNoZWRwcm9vZnRva2VuegExugE3Z3JvdXAucmVhZCBhbGxzaXRlcy5yZWFkIGFsbGZpbGVzLnJlYWQgYWxscHJvZmlsZXMucmVhZMIBSTIyNjk4YTdkLTRhZmQtNGJhNS1iMzMyLTNiMzA2NGRkYjFiNkA5MTVkYzNkOS04NTI2LTRhODYtYTc4My02MDc1OTVkMzMxZjXIAQE.kCyzpMNSnJKjdCpubfkQ_L7XvMZBFMseOjZQwHl_EEk\n#microsoft.graph.driveItem\nPlanet Express Interplanetary Payslip Employee name: Philip J. Fry Position: CEO Pay period: July 2024 Currency: Jillions PAYMENTS DEDUCTIONS YEAR TO DATE Basic Salary 1 jillion Taxes 0 Total pay to date: 1 jillion Taxable pay to date: 0 Tax paid to date: 0 THIS MONTH Gross pay: 1 jillion Income tax: 0 Total gross payments: 1 jillion Total deductions: 0 Net pay: 1 jillion\n01BV67HZ4LDJRFDXWOSZB3ILD7JPKUMB5W\nPE_payslip.docx\ndrive_item\nhttps://1fbkbs.sharepoint.com/_layouts/15/Doc.aspx?sourcedoc=%7B51621A8B-CEDE-4396-B42C-7F4BD54607B6%7D&amp;file=PE_payslip.docx&amp;action=default&amp;mobileredirect=true","title": null,"url": null,"filepath": null,"chunk_id": "0"},{"content": "https://1fbkbs.sharepoint.com/_layouts/15/download.aspx?UniqueId=d771ceaa-e47f-4fc1-bda1-64a1c55d6e48&amp;Translate=false&amp;tempauth=v1.eyJzaXRlaWQiOiJiN2Q3NzBjMC03ZTgwLTQ5OTMtOTZjZC1hOGY3YjMxZWUyYmQiLCJhcHBfZGlzcGxheW5hbWUiOiJzcC1sYWJzIiwiYXVkIjoiMDAwMDAwMDMtMDAwMC0wZmYxLWNlMDAtMDAwMDAwMDAwMDAwLzFmYmticy5zaGFyZXBvaW50LmNvbUA5MTVkYzNkOS04NTI2LTRhODYtYTc4My02MDc1OTVkMzMxZjUiLCJleHAiOiIxNzI3OTY1MTczIn0.CgoKBHNuaWQSAjQ4EgsI-Jr32YHusT0QBRoNMjAuMTkwLjEzMi40MCosc1NiQlBlQU9sZEVMWUUxMmVodnNTK3NSMmx4blJsOGoybGR0N1Zxeko5Zz0wdTgBQhChVktf74AAYI8XRwPrhkUMShBoYXNoZWRwcm9vZnRva2VuegExugE3Z3JvdXAucmVhZCBhbGxzaXRlcy5yZWFkIGFsbGZpbGVzLnJlYWQgYWxscHJvZmlsZXMucmVhZMIBSTIyNjk4YTdkLTRhZmQtNGJhNS1iMzMyLTNiMzA2NGRkYjFiNkA5MTVkYzNkOS04NTI2LTRhODYtYTc4My02MDc1OTVkMzMxZjXIAQE.eN2threRzN2AZvYmPTCsNsKy1x-MLV_RbDq_yzSexG8\n#microsoft.graph.driveItem\nPlanet Express Interplanetary Our Company Planet Express, Inc. is an intergalactic delivery company owned and operated by Professor Farnsworth to fund his research. Founded in 2961, its headquarters is located in New New York, and its crew includes many important characters of the series. The current crew reached their 100th delivery in September 3010, and to celebrate, Bender threw a 100th-delivery party. The inaugural delivery crew, which disappeared on its first interplanetary mission, was found alive in June 3011. The company scrapes by, in spite of fierce competition from the leader in package delivery, Mom's Friendly Delivery Company. They stay in business thanks to their complete disregard for safety and minimum wage laws, and the Professor's unscrupulous acceptance of the occasional bribe.\n01BV67HZ5KZZY5O77EYFH33ILEUHCV23SI\nPlanet_Express.docx\ndrive_item\nhttps://1fbkbs.sharepoint.com/_layouts/15/Doc.aspx?sourcedoc=%7BD771CEAA-E47F-4FC1-BDA1-64A1C55D6E48%7D&amp;file=Planet_Express.docx&amp;action=default&amp;mobileredirect=true","title": null,"url": null,"filepath": null,"chunk_id": "0"}],"intent": "[\"CEO salary\", \"current CEO salary\", \"CEO compensation\"]"}}}],"created": 1727985189,"model": "gpt-4o","object": "extensions.chat.completion","service_tier": null,"system_fingerprint": "fp_67802d9a6d","usage": {"completion_tokens": 28,"prompt_tokens": 3658,"total_tokens": 3686,"completion_tokens_details": null,"prompt_tokens_details": null}
}

不同之处在于,现在我们可以根据每个请求覆盖 ​​Elasticsearch 设置。

文档级安全性 (Document Level Security - DLS)

我们如何保护文档?Elastic 提供了镜像 Sharepoint 安全权限的工具,因此,根据提问者的身份,我们可以根据他们在 Sharepoint 上拥有的权限来检索或不检索文档,以回答问题。我们将为此使用文档级安全性 (DLS)。

事实上,工资单信息不会与网站成员共享,只有网站所有者和管理员才能使用:

让我们首先在连接器中运行访问控制同步来填充安全索引:

现在我们可以预期安全索引会收集每个文档/用户的权限。

让我们获取一个用户。转到 Kibana DevTools 并运行以下命令:

GET .search-acl-filter-sharepoint-labs/_search

响应:

{"_index": ".search-acl-filter-sharepoint-labs","_id": "LeeG@1fbkbs.onmicrosoft.com","_score": 1,"_source": {"created_at": "2024-07-16T07:28:22","id": "LeeG@1fbkbs.onmicrosoft.com","_timestamp": "2024-08-05T00:42:48.058411+00:00","identity": {"user_id": "user_id:2f7a1527-da11-4738-ad9d-0f6be1acb6a7","email": "email:LeeG@1fbkbs.onmicrosoft.com","username": "user:LeeG@1fbkbs.onmicrosoft.com"},"query": {"template": {"source": """{"bool": {"should": [{"bool": {"must_not": {"exists": {"field": "_allow_access_control"}}}},{"terms": {"_allow_access_control.enum": {{#toJson}}access_control{{/toJson}}}}]}}""","params": {"access_control": ["group:038fae1d-6ea3-485a-83b9-4362b54a14f5","user_id:2f7a1527-da11-4738-ad9d-0f6be1acb6a7","group:d11975c2-4fe8-45fd-9789-cbf37d4f115d","group:c0c350fa-37b0-476a-829d-733800cfbeea","group:70ddf71e-c04e-4202-b0ab-d4fd78921b72","group:829ee542-eb93-40f5-9790-688457a2b0f5","email:LeeG@1fbkbs.onmicrosoft.com","user:LeeG@1fbkbs.onmicrosoft.com","group:62ab5abe-bac2-4fc7-9b5f-92985b8ae69c"]}}}}}

该用户是网站成员,因此非常适合测试权限。

从这里我们可以从前面的响应中获取 query.template 部分,并为用户 LeeG 创建一个 API 密钥,执行以下操作:

POST /_security/api_key
{"name": "LeeG-api-key","expiration": "30d","role_descriptors": {"sharepoint-online-role": {"index": [{"names": ["sharepoint-labs"],"privileges": ["read","view_index_metadata"],"query": {"template": {"params": {"access_control": ["group:038fae1d-6ea3-485a-83b9-4362b54a14f5","user_id:2f7a1527-da11-4738-ad9d-0f6be1acb6a7","group:d11975c2-4fe8-45fd-9789-cbf37d4f115d","group:c0c350fa-37b0-476a-829d-733800cfbeea","group:70ddf71e-c04e-4202-b0ab-d4fd78921b72","group:829ee542-eb93-40f5-9790-688457a2b0f5","email:LeeG@1fbkbs.onmicrosoft.com","user:LeeG@1fbkbs.onmicrosoft.com","group:62ab5abe-bac2-4fc7-9b5f-92985b8ae69c"]},"source":"""{"bool": {"should": [{"bool": {"must_not": {"exists": {"field": "_allow_access_control"}}}},{"terms": {"_allow_access_control.enum": {{#toJson}}access_control{{/toJson}}}}]}}"""}}}]}}
}

响应将是具有 LeeG 组权限的 ApiKey:

{"id": "rpgMIJEBvlvLsU6BeL5O","name": "LeeG-api-key","expiration": 1725411573838,"api_key": "S3Q4XCNuTeu9fPITZNmLfA","encoded": "cnBnTUlKRUJ2bHZMc1U2QmVMNU86UzNRNFhDTnVUZXU5ZlBJVFpObUxmQQ=="
}

从这里获取 encoded 的值,以便在将来使用 Azure OpenAI On Your Data 进行调用时使用。如果你使用此 ApiKey,你将只能在 sharepoint-labs 连接器索引中看到 LeeG 的用户具有权限的文档。

让我们再试一次,现在使用 LeeG-api-key API 密钥:

completion = client.chat.completions.create(model=deployment,messages=[{"role": "user","content": "What is the CEO Salary?",},],extra_body={"data_sources": [{"type": "elasticsearch","parameters": {"endpoint": search_endpoint,"index_name": index_name,"authentication": {"type": "encoded_api_key","encoded_api_key": key # Our new API Key goes here}},"query_type": "simple","fields_mapping": {"content_fields_separator": "\n","content_fields": ["body"],"filepath_field": "name","title_field": "Title","url_field": "webUrl","vector_fields": ["ml.inference.body.predicted_value"]},}]}
)
print(completion.model_dump_json(indent=2))

响应:

{"id": "564eb9d5-5321-41d9-97c5-5abd9323b2d2","choices": [{"finish_reason": "stop","index": 0,"logprobs": null,"message": {"content": "The requested information is not available in the retrieved data. Please try another query or topic.","refusal": null,"role": "assistant","function_call": null,"tool_calls": null,"end_turn": true,"context": {"citations": [{"content": "https://1fbkbs.sharepoint.com/_layouts/15/download.aspx?UniqueId=d771ceaa-e47f-4fc1-bda1-64a1c55d6e48&amp;Translate=false&amp;tempauth=v1.eyJzaXRlaWQiOiJiN2Q3NzBjMC03ZTgwLTQ5OTMtOTZjZC1hOGY3YjMxZWUyYmQiLCJhcHBfZGlzcGxheW5hbWUiOiJzcC1sYWJzIiwiYXVkIjoiMDAwMDAwMDMtMDAwMC0wZmYxLWNlMDAtMDAwMDAwMDAwMDAwLzFmYmticy5zaGFyZXBvaW50LmNvbUA5MTVkYzNkOS04NTI2LTRhODYtYTc4My02MDc1OTVkMzMxZjUiLCJleHAiOiIxNzI3OTY1MTczIn0.CgoKBHNuaWQSAjQ4EgsI-Jr32YHusT0QBRoNMjAuMTkwLjEzMi40MCosc1NiQlBlQU9sZEVMWUUxMmVodnNTK3NSMmx4blJsOGoybGR0N1Zxeko5Zz0wdTgBQhChVktf74AAYI8XRwPrhkUMShBoYXNoZWRwcm9vZnRva2VuegExugE3Z3JvdXAucmVhZCBhbGxzaXRlcy5yZWFkIGFsbGZpbGVzLnJlYWQgYWxscHJvZmlsZXMucmVhZMIBSTIyNjk4YTdkLTRhZmQtNGJhNS1iMzMyLTNiMzA2NGRkYjFiNkA5MTVkYzNkOS04NTI2LTRhODYtYTc4My02MDc1OTVkMzMxZjXIAQE.eN2threRzN2AZvYmPTCsNsKy1x-MLV_RbDq_yzSexG8\n#microsoft.graph.driveItem\nPlanet Express Interplanetary Our Company Planet Express, Inc. is an intergalactic delivery company owned and operated by Professor Farnsworth to fund his research. Founded in 2961, its headquarters is located in New New York, and its crew includes many important characters of the series. The current crew reached their 100th delivery in September 3010, and to celebrate, Bender threw a 100th-delivery party. The inaugural delivery crew, which disappeared on its first interplanetary mission, was found alive in June 3011. The company scrapes by, in spite of fierce competition from the leader in package delivery, Mom's Friendly Delivery Company. They stay in business thanks to their complete disregard for safety and minimum wage laws, and the Professor's unscrupulous acceptance of the occasional bribe.\n01BV67HZ5KZZY5O77EYFH33ILEUHCV23SI\nPlanet_Express.docx\ndrive_item\nhttps://1fbkbs.sharepoint.com/_layouts/15/Doc.aspx?sourcedoc=%7BD771CEAA-E47F-4FC1-BDA1-64A1C55D6E48%7D&amp;file=Planet_Express.docx&amp;action=default&amp;mobileredirect=true","title": null,"url": null,"filepath": null,"chunk_id": "0"}],"intent": "[\"CEO salary\", \"current CEO salary\", \"CEO compensation\"]"}}}],"created": 1727985521,"model": "gpt-4o","object": "extensions.chat.completion","service_tier": null,"system_fingerprint": "fp_67802d9a6d","usage": {"completion_tokens": 31,"prompt_tokens": 2952,"total_tokens": 2983,"completion_tokens_details": null,"prompt_tokens_details": null}
}

太棒了!现在 CEO 的私人文件受到保护了。

我们可以尝试另一个问题,现在与 Lee 可以看到的文档相关,例如 Planet Express 信息文档。

尝试再次运行 python 文件,但现在将消息切换为:

{"role": "user","content": "What is Planet Express?"
}

回答:

"Planet Express, Inc. is an intergalactic delivery company owned and operated by Professor Farnsworth to fund his research. Founded in 2961, its headquarters is located in New New York. The company has a crew that includes many important characters from the series it is featured in. Despite fierce competition from the leading package delivery company, Mom's Friendly Delivery Company, Planet Express manages to stay in business by disregarding safety and minimum wage laws and occasionally accepting bribes..."

奖励:向量搜索

我们也将文档存储为向量,因此我们可以利用 Azure 向量查询类型。你可以在 UI 中选择查询类型为 vector:

如你所见,它将自动从 Elasticsearch 中检测模型。

它还将自动检测向量字段。你必须填写其余字段以进行引用。

或者通过以下方式使用 SDK:

token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")client = AzureOpenAI(azure_endpoint=endpoint,azure_ad_token_provider=token_provider,api_version="2024-02-15-preview",
)completion = client.chat.completions.create(model=deployment,messages=[{"role": "user","content": "What is Planet Express?",},],extra_body={"data_sources": [{"type": "elasticsearch","parameters": {"endpoint": search_endpoint,"index_name": index_name,"authentication": {"type": "encoded_api_key","encoded_api_key": key}},"query_type": "vector","embedding_dependency": {"type": "model_id","model_id": ".multilingual-e5-small_linux-x86_64"},"fields_mapping": {"content_fields_separator": "\n","content_fields": ["body"],"filepath_field": "name","title_field": "Title","url_field": "webUrl","vector_fields": ["ml.inference.body.predicted_value"]},}]}
)print(completion.model_dump_json(indent=2))

结论

Azure OpenAI “On Your Data” 服务是一种工具,可让你快速与数据进行聊天,而无需训练或微调模型。与 Elastic SharePoint 连接器结合使用,它允许你控制谁有权访问你的数据,以防止任何安全漏洞,使它们成为扎实的聊天问题的绝佳组合。

Elasticsearch 与行业领先的 Gen AI 工具和提供商进行了原生集成。查看我们的网络研讨会,了解如何超越 RAG 基础知识,或构建可用于生产环境的应用程序 Elastic Vector Database。

要为你的用例构建最佳搜索解决方案,请立即开始免费云试用或在你的本地机器上试用 Elastic。

原文:Federated SharePoint searches with Azure OpenAI Service On your data - Search Labs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/59758.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

chat2db调用ollama实现数据库的操作。

只试了mysql的调用。 其它的我也不用&#xff0c;本来想充钱算了。最后一看单位是美刀。就放弃了这分心。于是折腾了一下。 本地运行chat2db 及chat2db ui https://gitee.com/ooooinfo/Chat2DB clone 后运行起来 chat2db的java端&#xff0c;我现在搞不清这一个项目是有没有…

【搜狐简单AI-注册/登录安全分析报告-无验证方式导致安全隐患】

前言 由于网站注册入口容易被机器执行自动化程序攻击&#xff0c;存在如下风险&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露&#xff0c;不符合国家等级保护的要求。短信盗刷带来的拒绝服务风险 &#xff0c;造成用户无法登陆、注册&#xff0c;大量收到垃圾短信的…

微服务day09

DSL查询 快速入门 GET /items/_search {"query": {"match_all": {}} } 叶子查询 GET /items/_search {"query": {"match_all": {}} }GET /items/_search {"query": {"multi_match": {"query": "脱…

Linux驱动开发第2步_“物理内存”和“虚拟内存”的映射

“新字符设备的GPIO驱动”和“设备树下的GPIO驱动”都要用到寄存器地址&#xff0c;使用“物理内存”和“虚拟内存”映射时&#xff0c;非常不方便&#xff0c;而pinctrl和gpio子系统的GPIO驱动&#xff0c;非常简化。因此&#xff0c;要重点学习pinctrl和gpio子系统下的GPIO驱…

force stop和pm clear的区别

前言&#xff1a;因为工作中遇到force stop和pm clear进程后&#xff0c;进程不能再次挂起&#xff0c;谷歌系统共性问题&#xff0c;服务类应用经清缓存后当下服务就会挂掉&#xff0c;需要系统重启才能恢复。为了更好的“丢锅”&#xff0c;需要进一步学习force stop和pm cle…

【大数据学习 | flume】flume Sink Processors与拦截器Interceptor

1. Failover Sink Processor 故障转移处理器可以同时指定多个sink输出&#xff0c;按照优先级高低进行数据的分发&#xff0c;并具有故障转移能力。 需要修改第一台服务器agent a1.sourcesr1 a1.sinksk1 k2 a1.channelsc1 a1.sources.r1.typenetcat a1.sources.r1.bindworker…

如何从头开始构建神经网络?(附教程)

随着流行的深度学习框架的出现&#xff0c;如 TensorFlow、Keras、PyTorch 以及其他类似库&#xff0c;学习神经网络对于新手来说变得更加便捷。虽然这些框架可以让你在几分钟内解决最复杂的计算任务&#xff0c;但它们并不要求你理解背后所有需求的核心概念和直觉。如果你知道…

Conda安装与使用中的若干问题记录

Conda安装与使用中的若干问题记录 1.Anaconda 安装失败1.1.问题复述1.2.问题解决&#xff08;安装建议&#xff09; 2.虚拟环境pip install未安装至本虚拟环境2.1.问题复述2.2.问题解决 3.待补充 最近由于工作上的原因&#xff0c;要使用到Conda进行虚拟环境的管理&#xff0c;…

『OpenCV-Python』视频的读取和保存

点赞 + 关注 + 收藏 = 学会了 推荐关注 《OpenCV-Python专栏》 上一讲介绍了 OpenCV 的读取图片的方法,这一讲简单聊聊 OpenCV 读取和保存视频。 视频的来源主要有2种,一种是本地视频文件,另一种是实时视频流,比如手机和电脑的摄像头。 要读取这两种视频的方法都是一样的…

字节青训-字符串字符类型排序问题、小C点菜问题

目录 一、字符串字符类型排序问题 题目 样例 输入&#xff1a; 输出&#xff1a; 输入&#xff1a; 输出&#xff1a; 输入&#xff1a; 输出&#xff1a; 解题思路&#xff1a; 问题理解 数据结构选择 算法步骤 最终代码&#xff1a; 运行结果&#xff1a; ​…

深入理解接口测试:实用指南与最佳实践5.0(二)

✨博客主页&#xff1a; https://blog.csdn.net/m0_63815035?typeblog &#x1f497;《博客内容》&#xff1a;.NET、Java.测试开发、Python、Android、Go、Node、Android前端小程序等相关领域知识 &#x1f4e2;博客专栏&#xff1a; https://blog.csdn.net/m0_63815035/cat…

CSS基础知识05(弹性盒子、布局详解,动画,3D转换,calc)

目录 0、弹性盒子、布局 0.1.弹性盒子的基本概念 0.2.弹性盒子的主轴和交叉轴 0.3.弹性盒子的属性 flex-direction row row-reverse column column-reverse flex-wrap nowrap wrap wrap-reverse flex-dirction和flex-wrap的组合简写模式 justify-content flex-s…

任务调度工具Spring Test

Spring Task 是Spring框架提供的任务调度工具&#xff0c;可以按照约定的时间自动执行某个代码逻辑。 作用&#xff1a;定时自动执行某段Java代码 应用场景&#xff1a; 信用卡每月还款提醒 银行贷款每月还款提醒 火车票售票系统处理未支付订单 入职纪念日为用户发送通知 一.…

嵌入式硬件杂谈(二)-芯片输入接入0.1uf电容的本质(退耦电容)

引言&#xff1a;对于嵌入式硬件这个庞大的知识体系而言&#xff0c;太多离散的知识点很容易疏漏&#xff0c;因此对于这些容易忘记甚至不明白的知识点做成一个梳理&#xff0c;供大家参考以及学习&#xff0c;本文主要针对芯片输入接入0.1uf电容的本质的知识点的进行学习。 目…

数据结构(单向链表——c语言实现)

链式存储的优缺点&#xff1a; 优点&#xff1a; 1、动态分配内存&#xff1a; 链式存储不需要在数据插入之前分配固定大小的数组或内存块&#xff0c;因此它更适合存储动态变化的数据 2、高效的插入和删除操作&#xff1a; 在链表中插入或删除元素只需要调整相邻节点的指…

基于Spring Boot的电子商务平台架构

2 相关技术 2.1 SpringBoot框架介绍 Spring Boot是一种不需要代码生成的一种框架&#xff0c;并且可以不需要配置任何的XML文件就可以&#xff0c;因为Spring Boot里面自带了很多接口&#xff0c;只需要配置不同的接口就会自动的应用并且识别需要的依赖&#xff0c;在配置方面非…

Level DB --- Block

class Block class Block是Level DB里面的重要数据结构&#xff0c;该数据结构用来承载已经存储到文件中的数据。已经被存储的数据当需要再次加载、应用&#xff08;例如搜索&#xff09;&#xff0c;这时首先要把数据加载、初始化到class Block里面。 数据的组织形式&#x…

记录大学Linux运维上机考试题目和流程

备注&#xff1a;今年的Linux操作系统考试已经全部结束&#xff0c;仅作为一个记录和留念 前提&#xff1a;配置环回网卡和环境和nat网卡 1、搭建dns服务器 2、Apache和http服务 3、搭建postfix邮件服务器实现邮件发送 4、搭建vsftpdFTP服务器实现文件上传 题目如下&…

前端面试笔试(四)

目录 一、数据结构算法等综合篇 1.线性探查法解决哈希冲突 2.请求分页系统中文件区和对换区 3.RADIUS认证协议&#xff0c;运行在哪个网络协议上 二、代码输出篇 1.res[1,2,100].map(parseInt) 如果我们想要输出为[1,2,100]&#xff0c;可以&#xff1a; 还可以换map里…

NVR录像机汇聚管理EasyNVR多品牌NVR管理工具视频汇聚技术在智慧安防监控中的应用与优势

随着信息技术的快速发展和数字化时代的到来&#xff0c;安防监控领域也在不断进行技术创新和突破。NVR管理平台EasyNVR作为视频汇聚技术的领先者&#xff0c;凭借其强大的视频处理、汇聚与融合能力&#xff0c;展现出了在安防监控领域巨大的应用潜力和价值。本文将详细介绍Easy…