我谈正态分布——正态偏态

目录

  • pdf和cdf
    • 参数
  • 标准正态分布
  • 期望和方差
  • 分布形态
  • 正态和偏态
    • 正态
    • 偏态
      • 瑞利分布
        • 偏度 (Skewness)
        • 峰度 (Kurtosis)
    • 比较

正态分布的英文是Normal Distribution,normal是“正常”或“标准”的意思,中文翻译是正态,多完美的翻译,正态对应偏态,正态是指分布曲线左右对称,偏度为零。正态分布的峰度也为0。

话说现在的翻译真让人受不了,比如那个multi-head attention。head还有body是按身体的部位命名的,那可能是语言习惯,就像描述像素邻域,他们用north, south, southeast这样描述,但是我们用上、下,右下描述,如果中文用北、南、东南这样描述是不是很奇怪,语言习惯不一样。

不会翻译还不如不翻了,那些翻译为头的人到底有脑子吗?很烦那种不说人话的翻译。

言归正传

正态分布(Normal Distribution),也被称为高斯分布(Gaussian Distribution),是一种重要的连续型概率分布。它在自然和社会科学的许多领域中都有广泛的应用。

pdf和cdf

正态分布的概率密度函数可以表示为:
f ( x ) = 1 σ 2 π e − 1 2 ( x − μ σ ) 2 f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} f(x)=σ2π 1e21(σxμ)2
其中, x x x是随机变量的取值, μ \mu μ是均值, σ \sigma σ是标准差。记为 X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^2) XN(μ,σ2)

正态分布的图形是对称的,其形状像一个钟形曲线,均值(mean)、中位数(median)和众数(mode)都位于分布的中心点。数据集中在均值附近,随着离均值距离的增加,数据出现的概率迅速减少。

在这里插入图片描述

正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)的分布函数为

F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt F(x)=2π σ1xe2σ2(tμ)2dt

它是一条光滑上升的 S 形曲线。

在这里插入图片描述

参数

正态分布中的两个参数——均值 μ μ μ和标准差 σ σ σ如何影响正态分布图形的形状和位置。

  1. 如果固定 σ σ σ,改变 μ μ μ的值,则曲线沿 x 轴平移,而不改变其形状。也就是说正态密度函数的位置由参数 μ μ μ所确定,因此称 μ μ μ位置参数

  2. 如果固定 μ μ μ,改变 σ σ σ的值,则分布的位置不变,但 σ σ σ愈小,曲线呈高且窄,数据更加集中于均值周围; σ σ σ愈大,曲线呈低且宽,数据较为分散。也就是说正态密度函数的尺度由参数 σ σ σ所确定,因此称 σ σ σ尺度参数

总结,均值 μ μ μ决定分布的位置,而标准差 σ σ σ则决定了分布的宽度和数据的集中程度。

在这里插入图片描述

标准正态分布

设定随机变量 X X X服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),并将其标准化为 U = X − μ σ U = \frac{X - \mu}{\sigma} U=σXμ,使得 U U U服从标准正态分布 N ( 0 , 1 ) N(0, 1) N(0,1)

对于标准正态分布(均值为0,标准差为1),概率密度函数为:
p ( z ) = 1 2 π e − z 2 2 p(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} p(z)=2π 1e2z2
标准正态分布的累积分布函数:
Φ ( z ) = ∫ − ∞ z 1 2 π e − t 2 2 d t \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \, dt Φ(z)=z2π 1e2t2dt

期望和方差

好巧不巧,正态分布的两个参数正好是均值和标准差。正态分布就是那么完美。

假设 U U U服从标准正态分布 N ( 0 , 1 ) N(0, 1) N(0,1)

  1. 均值的计算

    • 计算 U U U的期望值 E ( U ) E(U) E(U)
      E ( U ) = 1 2 π ∫ − ∞ ∞ u e − u 2 2 d u E(U) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u e^{-\frac{u^2}{2}} du E(U)=2π 1ue2u2du
      由于被积函数是一个奇函数,其积分结果为零,即 E ( U ) = 0 E(U) = 0 E(U)=0
    • 因此,根据 X = μ + σ U X = \mu + \sigma U X=μ+σU,可以得出 X X X的期望值 E ( X ) E(X) E(X)
      E ( X ) = μ + σ × 0 = μ E(X) = \mu + \sigma \times 0 = \mu E(X)=μ+σ×0=μ
    • 结论:正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)的均值为 μ \mu μ
  2. 方差的计算

    • 首先计算 U U U的方差 V a r ( U ) Var(U) Var(U)或者说是 U 2 U^2 U2的期望值 E ( U 2 ) E(U^2) E(U2)
      E ( U 2 ) = 1 2 π ∫ − ∞ ∞ u 2 e − u 2 2 d u E(U^2) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u^2 e^{-\frac{u^2}{2}} du E(U2)=2π 1u2e2u2du
      利用分部积分法,最终得到 E ( U 2 ) = 1 E(U^2) = 1 E(U2)=1
    • 根据 X = μ + σ U X = \mu + \sigma U X=μ+σU,可以得出 X X X的方差 V a r ( X ) Var(X) Var(X)
      V a r ( X ) = V a r ( μ + σ U ) = σ 2 V a r ( U ) = σ 2 × 1 = σ 2 Var(X) = Var(\mu + \sigma U) = \sigma^2 Var(U) = \sigma^2 \times 1 = \sigma^2 Var(X)=Var(μ+σU)=σ2Var(U)=σ2×1=σ2
    • 结论:正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)的方差为 σ 2 \sigma^2 σ2

注意: E ( X ) = μ E(X) = \mu E(X)=μ V a r ( X ) = σ 2 Var(X) = \sigma^2 Var(X)=σ2,均值 μ \mu μ和方差 σ 2 \sigma^2 σ2是正态分布的参数,只是在正态分布中正好等于期望和方差,而 E ( X ) E(X) E(X) V a r ( X ) Var(X) Var(X)是统计量,注意分区概念。有些刊物真是离谱了。
例如,Rafael Gonzalez的《数字图像处理》,此外这个 a a a也真多余。
在这里插入图片描述
和这个
在这里插入图片描述

分布形态

对于一个连续随机变量 X X X,其概率密度函数 f ( x ) f(x) f(x)描述了 X X X在某个特定值 x x x处的概率密度。需要注意的是, f ( x ) f(x) f(x)不直接表示概率,而是表示概率的密度。

对于任意区间 [ a , b ] [a, b] [a,b],随机变量 X X X落在这个区间内的概率可以通过计算该区间上的曲线下面积来得到。数学上,这可以通过积分来表示:
P ( a ≤ X ≤ b ) = ∫ a b f ( x ) d x P(a \leq X \leq b) = \int_{a}^{b} f(x) \, dx P(aXb)=abf(x)dx
要计算 X X X落在某个区间 [ a , b ] [a, b] [a,b]内的概率,可以使用正态分布的累积分布函数(CDF):
P ( a ≤ X ≤ b ) = Φ ( b ) − Φ ( a ) P(a \leq X \leq b) = \Phi(b) - \Phi(a) P(aXb)=Φ(b)Φ(a)
其中, Φ ( x ) \Phi(x) Φ(x)是正态分布的累积分布函数。

假设要计算标准正态分布中 Z Z Z落在 [ − 1 , 1 ] [-1, 1] [1,1]区间内的概率。

  1. 计算 Φ ( 1 ) \Phi(1) Φ(1)
    Φ ( 1 ) = ∫ − ∞ 1 1 2 π e − t 2 2 d t ≈ 0.8413 \Phi(1) = \int_{-\infty}^{1} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \, dt \approx 0.8413 Φ(1)=12π 1e2t2dt0.8413

  2. 计算 Φ ( − 1 ) \Phi(-1) Φ(1)
    Φ ( − 1 ) = ∫ − ∞ − 1 1 2 π e − t 2 2 d t ≈ 0.1587 \Phi(-1) = \int_{-\infty}^{-1} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \, dt \approx 0.1587 Φ(1)=12π 1e2t2dt0.1587

  3. 计算概率
    P ( − 1 ≤ Z ≤ 1 ) = Φ ( 1 ) − Φ ( − 1 ) = 0.8413 − 0.1587 = 0.6826 P(-1 \leq Z \leq 1) = \Phi(1) - \Phi(-1) = 0.8413 - 0.1587 = 0.6826 P(1Z1)=Φ(1)Φ(1)=0.84130.1587=0.6826

因此,标准正态分布中 Z Z Z落在 [ − 1 , 1 ] [-1, 1] [1,1]区间内的概率约为0.6826,即68.26%。

3 σ 3\sigma 3σ原则

  • 1 σ 1σ 1σ区间:大约68.27%的数据点位于平均值 μ μ μ的一个标准差 σ σ σ的范围内,即在 ( μ − σ , μ + σ ) (μ - σ, μ + σ) (μσ,μ+σ)之间。
    P ( μ − σ < X < μ + σ ) ≈ 0.6827 P(μ - σ < X < μ + σ) ≈ 0.6827 P(μσ<X<μ+σ)0.6827
  • 2 σ 2σ 2σ区间:大约95.45%的数据点位于平均值 μ μ μ的两个标准差 2 σ 2σ 2σ的范围内,即在 ( μ − 2 σ , μ + 2 σ ) (μ - 2σ, μ + 2σ) (μ2σ,μ+2σ)之间。
    P ( μ − 2 σ < X < μ + 2 σ ) ≈ 0.9545 P(μ - 2σ < X < μ + 2σ) ≈ 0.9545 P(μ2σ<X<μ+2σ)0.9545
  • 3 σ 3σ 3σ区间:大约99.73%的数据点位于平均值 μ μ μ的三个标准差 3 σ 3σ 3σ的范围内,即在 ( μ − 3 σ , μ + 3 σ ) (μ - 3σ, μ + 3σ) (μ3σ,μ+3σ)之间。
    P ( μ − 3 σ < X < μ + 3 σ ) ≈ 0.9973 P(μ - 3σ < X < μ + 3σ) ≈ 0.9973 P(μ3σ<X<μ+3σ)0.9973

正态分布的3σ原则指出,正态分布随机变量取值落在三倍标准差之外的概率非常小,大约是0.27%(即100% - 99.73%)。

  • 落在 μ ± 3 σ μ±3σ μ±3σ之外的概率为 1 − 0.9973 = 0.0027 1 - 0.9973 = 0.0027 10.9973=0.0027或者说约为0.27%。

在实际应用中,由于这个概率非常小,通常认为这样的事件几乎不会发生。因此,在很多情况下,可以将区间 ( μ − 3 σ , μ + 3 σ ) (μ - 3σ, μ + 3σ) (μ3σ,μ+3σ)视为正态分布随机变量的实际可能取值区间。这意味着在这个区间之外的值可以被视为异常值或者极端值。

这种处理方式简化了数据分析和决策制定的过程,尤其是在质量控制、过程改进等实际问题中, 3 σ 3σ 3σ原则提供了一种有效的方法来识别和处理异常数据点。这也就是所谓的正态分布的 3 σ 3σ 3σ原则。

normcdf(1)-normcdf(-1)
normcdf(2)-normcdf(-2)
normcdf(3)-normcdf(-3)

在这里插入图片描述

正态和偏态

正态

正态分布的曲线是左右对称的,其形状像一个钟形曲线,均值(mean)、中位数(median)和众数(mode)都位于分布的中心点。

偏态

偏态分布是指数据分布不是对称的,而是偏向一侧。偏态可以是正偏(右偏)或负偏(左偏)。

  • 当分布曲线的尾巴向右延伸时,称为正偏态;在正偏态分布中,大多数数据值集中在左侧,而右侧有较长的拖尾。
  • 当分布曲线的尾巴向左延伸时,称为负偏态。而在负偏态分布中,大多数数据值集中在右侧,左侧有较长的拖尾。

瑞利分布

看瑞利分布,我喜欢这个分布,并不知道什么用,就是喜欢它的流线型。

对于参数为 σ \sigma σ的瑞利分布,其概率密度函数 (PDF) 可以表示为:
f ( x ; σ ) = x σ 2 e − x 2 / ( 2 σ 2 ) , x ≥ 0 f(x;\sigma) = \frac{x}{\sigma^2} e^{-x^2/(2\sigma^2)}, \quad x \geq 0 f(x;σ)=σ2xex2/(2σ2),x0

其中, σ > 0 \sigma > 0 σ>0是尺度参数。

  • 均值(期望):
    E ( X ) = σ π 2 E(X) = \sigma \sqrt{\frac{\pi}{2}} E(X)=σ2π

  • 方差:
    V a r ( X ) = ( 4 − π ) σ 2 2 Var(X) = \left( 4 - \pi \right) \frac{\sigma^2}{2} Var(X)=(4π)2σ2

瑞利分布的均值和方差如何随着形状参数 σ \sigma σ的变化而变化。具体来说,当 σ \sigma σ增大时,均值和方差都会相应地增加。

偏度 (Skewness)

瑞利分布的偏度是正的,表明分布是右偏的。具体来说,偏度 γ 1 \gamma_1 γ1可以通过以下公式计算:
γ 1 = 2 π ( 4 − π 2 ) − 3 / 2 ≈ 0.6311 \gamma_1 = \sqrt{\frac{2}{\pi}} \left( \frac{4 - \pi}{2} \right)^{-3/2} \approx 0.6311 γ1=π2 (24π)3/20.6311

峰度 (Kurtosis)

峰度描述了分布的尖峭程度,对于瑞利分布,其峰度 β 2 \beta_2 β2可以表示为:
β 2 = ( 4 − π 2 ) − 2 ⋅ ( 3 − 6 π 4 − π + π 2 2 ) ≈ 3.245 \beta_2 = \left( \frac{4 - \pi}{2} \right)^{-2} \cdot \left( 3 - \frac{6\pi}{4 - \pi} + \frac{\pi^2}{2} \right) \approx 3.245 β2=(24π)2(34π6π+2π2)3.245

这里,峰度是指四阶标准化矩,而超峰度(excess kurtosis)则是指峰度减去3,因此瑞利分布的超量峰度为:
Excess Kurtosis = β 2 − 3 ≈ 0.245 \text{Excess Kurtosis} = \beta_2 - 3 \approx 0.245 Excess Kurtosis=β230.245

正态分布的偏度为0,峰度为3(超峰度为0),而瑞利分布的偏度为正值,峰度略大于3,这反映了它的分布形态特点。

在这里插入图片描述

比较

  • 对称性:正态分布是对称的,而偏态分布是非对称的。
  • 中心位置:在正态分布中,均值、中位数和众数都是相同的;而在偏态分布中,这三个统计量通常不同,且它们之间的关系可以用来判断偏态的方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/59214.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从无音响Windows 端到 有音响macOS 端实时音频传输播放

以下是从 Windows 端到 macOS 端传输音频的优化方案&#xff0c;基于上述链接中的思路进行调整&#xff1a; Windows 端操作 安装必要软件 安装 Python&#xff08;确保版本兼容且已正确配置环境变量&#xff09;。安装 PyAudio 库&#xff0c;可通过 pip install pyaudio 命令…

AI知识库在行业应用中的未来趋势与案例分析

在数字化转型的浪潮中&#xff0c;AI知识库正成为企业提升效率和创新能力的关键工具。本文将探讨AI知识库在不同行业的应用案例&#xff0c;并分析其未来发展趋势。 一、汽修行业的AI知识库应用 汽修行业正通过构建内部知识库来提升服务质量和工作效率。一个完善的内部知识库能…

STM32 BootLoader 刷新项目 (九) 跳转指定地址-命令0x55

STM32 BootLoader 刷新项目 (九) 跳转指定地址-命令0x55 前面我们讲述了几种BootLoader中的命令&#xff0c;包括获取软件版本号、获取帮助、获取芯片ID、读取Flash保护Level。 下面我们来介绍一下BootLoader中最重要的功能之一—跳转&#xff01;就像BootLoader词汇中的Boot…

sqlite3数据库的相关API使用

1 1:使用sqlite3_exec函数读取数据库的数据,将这些数据存入链表遍历该链表&#xff0c;输出“字段”“数据”2:使用sqlite3_get_table读取数据库的数据写一个“字段" "数据”输出的循环 1 #include <stdio.h> #include <string.h> #include <unistd.…

基于Python下载HYCOM-3hourly数据(可无脑用)

基于Python下载HYCOM-3hourly数据 一、安装库二、主要函数2.1 draw_time_range2.2 download2.2.1 下载函数2.2.2 必传入参数&#xff1a;2.2.3 其他参数&#xff1a; 2.3 merge5nc 三、完整代码3.1 乱七八糟版3.2 精简版3.3 get_time_list 四、效果4.1 终端4.2 nc文件4.3 全文本…

Hbase集群搭建

1. 环境 三台节点hadoop 集群zookeeper 集群hbase 1.1环境准备 使用前文hdfs三台节点 1.11 zookeeper搭建 下载 wget https://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz解压 tar -zxvf apache-zookeeper-3.8.4-bin.tar.gz zookee…

为什么用SQL而不是Excel+VBA?

SQL主要服务数据库 SQL服务的是MySQL、Oracle、SQL Sever、Hive等各大数据库&#xff0c;它们都需要SQL来管理、定义。题主理解的SQL只限于查询数据、清洗数据&#xff0c;这些当然ExcelVBA都能做到&#xff0c;任何编程语言都能做到&#xff0c;但事实是SQL是数据库的管理工具…

Android OpenGL ES详解——纹理:纹理过滤GL_NEAREST和GL_LINEAR的区别

目录 一、概念 1、纹理过滤 2、邻近过滤 3、线性过滤 二、邻近过滤和线性过滤的区别 三、源码下载 一、概念 1、纹理过滤 当纹理被应用到三维物体上时&#xff0c;随着物体表面的形状和相机视角的变化&#xff0c;会导致纹理在渲染过程中出现一些问题&#xff0c;如锯齿…

OpenHarmony4.1蓝牙芯片如何适配?触觉智能RK3568主板SBC3568演示

当打开蓝牙后没有反应时&#xff0c;需要排查蓝牙节点是否对应、固件是否加载成功&#xff0c;本文介绍开源鸿蒙OpenHarmony4.1系统下适配蓝牙的方法&#xff0c;触觉智能SBC3568主板演示 修改对应节点 开发板蓝牙硬件连接为UART1&#xff0c;修改对应的节点&#xff0c;路径为…

Kafka高频面试题详解

1、kafka是如何做到高效读写 1&#xff09;Kafka 本身是分布式集群&#xff0c;可以采用分区技术&#xff0c;并行度高 2&#xff09;读数据采用稀疏索引&#xff0c;可以快速定位要消费的数据。&#xff08;mysql中索引多了之后&#xff0c;写入速度就慢了&#xff09; 3&a…

ML 系列: 第 23 节 — 离散概率分布 (多项式分布)

目录 一、说明 二、多项式分布公式 2.1 多项式分布的解释 2.2 示例 2.3 特殊情况&#xff1a;二项分布 2.4 期望值 &#xff08;Mean&#xff09; 2.5 方差 三、总结 3.1 python示例 一、说明 伯努利分布对这样一种情况进行建模&#xff1a;随机变量可以采用两个可能的值&#…

MFC工控项目实例三十实现一个简单的流程

启动按钮夹紧 密闭&#xff0c;时间0到平衡 进气&#xff0c;时间1到进气关&#xff0c;时间2到平衡关 检测&#xff0c;时间3到平衡 排气&#xff0c;时间4到夹紧开、密闭开、排气关。 相关代码 void CSEAL_PRESSUREDlg::OnTimer_2(UINT nIDEvent_2) {// if (nIDEvent_21 &am…

当使用key-value方式进行参数传递时,若key对应的是一个对象或数组结构,如何利用API Post工具进行模拟操作。

1. 后端服务代码如下 RequestMapping("/handle11")public Person handle11(Person person){System.out.println(person);return person;} 2. 后端入参结构 person是一个对象&#xff0c;对象结构如下&#xff1a; public class Person {private String username …

MySQL技巧之跨服务器数据查询:基础篇-A数据库与B数据库查询合并

MySQL技巧之跨服务器数据查询&#xff1a;基础篇-A数据库与B数据库查询合并 上一篇已经描述&#xff1a;借用微软的SQL Server ODBC 即可实现MySQL跨服务器间的数据查询。 而且还介绍了如何获得一个在MS SQL Server 可以连接指定实例的MySQL数据库的链接名: MY_ODBC_MYSQL 以…

人工智能赋能快递物流,基于YOLOv3全系列【tiny/l/spp】参数模型开发构建物流分拣场景下快递包裹智能检测计数系统

随着电商互联网的迅猛发展&#xff0c;消费者的购物习惯发生了翻天覆地的变化&#xff0c;网购已成为日常生活不可或缺的一部分。这一趋势直接推动了快递物流行业的快速扩张&#xff0c;每天都有数以亿计的包裹在全球范围内流转。然而&#xff0c;传统的快递点物流包裹分拣工作…

Nginx中实现流量控制(限制给定时间内HTTP请求的数量)示例

场景 流量控制 流量限制 (rate-limiting)&#xff0c;可以用来限制用户在给定时间内HTTP请求的数量。 流量限制可以用作安全目的&#xff0c;比如可以减慢暴力密码破解的速率&#xff0c; 更常见的情况是该功能被用来保护上游应用服务器不被同时太多用户请求所压垮。 流量…

【ARM Coresight OpenOCD 系列 5 -- arp_examine 使用介绍】

文章目录 OpenOCD arp_examine 使用 OpenOCD arp_examine 使用 因为我们很多时候运行 Openocd 的时候有些 core 还没有启动, 所以最好在配置脚本中添加 -defer-examine这个参数, 如下&#xff1a; #cortex-m33 target create ${_CHIPNAME}.m33 cortex_m -dap ${_CHIPNAME}.da…

【AI新领域应用】AlphaFold 2,原子级别精度的蛋白质3D结构预测,李沐论文精读(2021Nature封面,2024诺贝尔奖)

文章目录 AlphaFold 2 —— 原子级别精度的蛋白质3D结构预测背景&#xff08;2024诺奖与AI学习资料&#xff09;1、摘要、导论、写作技巧2、方案&#xff1a;模型&#xff0c;编码器&#xff0c;解码器3、实验&#xff1a;数据集&#xff0c;训练&#xff0c;结果 AlphaFold 2 …

微服务day06

MQ入门 同步处理业务&#xff1a; 异步处理&#xff1a; 将任务处理后交给MQ来进行分发处理。 MQ的相关知识 同步调用 同步调用的小结 异步调用 MQ技术选型 RabbitMQ 安装部署 其中包含几个概念&#xff1a; publisher&#xff1a;生产者&#xff0c;也就是发送消息的一方 …

[ Linux 命令基础 2 ] Linux 命令详解-系统管理命令

&#x1f36c; 博主介绍 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 _PowerShell &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 &#x1f389;点赞➕评论➕收藏 养成习…