近似线性可分支持向量机的原理推导

近似线性可分的意思是训练集中大部分实例点是线性可分的,只是一些特殊实例点的存在使得这种数据集不适用于直接使用线性可分支持向量机进行处理,但也没有到完全线性不可分的程度。所以近似线性可分支持向量机问题的关键就在于这些少数的特殊点。

相较于线性可分情况下直接的硬间隔最大化策略,近似线性可分问题需要采取一种称为“软间隔最大化”的策略来处理。少数特殊点不满足函数间隔大于1的约束条件,近似线性可分支持向量机的解决方案是对每个这样的特殊实例点引入一个松弛变量 ξ i ⩾ 0 \xi_i \geqslant 0 ξi0 ,使得函数间隔加上松弛变量后大于等于1,约束条件就变为:
y i ( w ⋅ x i + b ) + ξ i ⩾ 1 (9-37) y_i(w \cdot x_i + b) + \xi_i \geqslant 1 \tag{9-37} yi(wxi+b)+ξi1(9-37)

对应的目标函数也变为:
1 2 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 N ξ i (9-38) \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i \tag{9-38} 21∣∣w2+Ci=1Nξi(9-38)

其中 C C C 为惩罚系数,表示对误分类点的惩罚力度。

跟线性可分支持向量机一样,近似线性可分支持向量机可形式化为一个凸二次规划问题:
min ⁡ w , b , ξ 1 2 ∥ w ∥ 2 + C ∑ i = 1 N ξ i s.t.  y i ( w ⋅ x i + b ) ≥ 1 − ξ i , i = 1 , 2 , ⋯ , N ξ i ≥ 0 , i = 1 , 2 , ⋯ , N (9-39) \begin{aligned} & \min_{w,b,\xi} \quad \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{N} \xi_i \\ & \text { s.t. } \quad y_i (w \cdot x_i + b) \geq 1 - \xi_i, \quad i = 1, 2, \cdots, N \\ & \quad \xi_i \geq 0, \quad i = 1, 2, \cdots, N \tag{9-39} \end{aligned} w,b,ξmin21w2+Ci=1Nξi s.t. yi(wxi+b)1ξi,i=1,2,,Nξi0,i=1,2,,N(9-39)

类似于 9.2.1 节的线性可分离支持向量机的凸二次规划问题,我们同样将其转化为对偶问题进行求解。式(9-39)的对偶问题为:
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i s.t.  ∑ i = 1 N α i y i = 0 0 ≤ α i ≤ C , i = 1 , 2 , ⋯ , N (9-40) \begin{aligned} & \min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) - \sum_{i=1}^{N} \alpha_i \\ & \text { s.t. } \quad \sum_{i=1}^{N} \alpha_i y_i = 0 \\ & \quad 0 \leq \alpha_i \leq C, \quad i = 1, 2, \cdots, N \tag{9-40} \end{aligned} αmin21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi s.t. i=1Nαiyi=00αiC,i=1,2,,N(9-40)

式(9-39)的拉格朗日函数为:
L ( w , b , ξ , α , μ ) = 1 2 ∥ w ∥ 2 + C ∑ i = 1 N ξ i − ∑ i = 1 N α i ( y i ( w ⋅ x i + b ) − 1 + ξ i ) − ∑ i = 1 N μ i ξ i (9-41) L(w, b, \xi, \alpha, \mu) = \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i (y_i (w \cdot x_i + b) - 1 + \xi_i) - \sum_{i=1}^{N} \mu_i \xi_i \tag{9-41} L(w,b,ξ,α,μ)=21w2+Ci=1Nξii=1Nαi(yi(wxi+b)1+ξi)i=1Nμiξi(9-41)

原始问题为极小极大化问题,则对偶问题为极大极小化问题。同样先对 L ( w , b , ξ , α , μ ) L(w, b, \xi, \alpha, \mu) L(w,b,ξ,α,μ) w , b , ξ w, b, \xi w,b,ξ 的极小,再对其求 α \alpha α 的极大。首先求 L ( w , b , ξ , α , μ ) L(w, b, \xi, \alpha, \mu) L(w,b,ξ,α,μ) 关于 w , b , ξ w, b, \xi w,b,ξ 的偏导,如下:
∂ L ∂ w = w − ∑ i = 1 N α i y i x i = 0 (9-42) \frac{\partial L}{\partial w} = w - \sum_{i=1}^{N} \alpha_i y_i x_i = 0 \tag{9-42} wL=wi=1Nαiyixi=0(9-42)

∂ L ∂ b = − ∑ i = 1 N α i y i = 0 (9-43) \frac{\partial L}{\partial b} = - \sum_{i=1}^{N} \alpha_i y_i = 0 \tag{9-43} bL=i=1Nαiyi=0(9-43)

∂ L ∂ ξ i = C − α i − μ i = 0 (9-44) \frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i = 0 \tag{9-44} ξiL=Cαiμi=0(9-44)

可解得:
w = ∑ i = 1 N α i y i x i (9-45) w = \sum_{i=1}^{N} \alpha_i y_i x_i \tag{9-45} w=i=1Nαiyixi(9-45)

∑ i = 1 N α i y i = 0 (9-46) \sum_{i=1}^{N} \alpha_i y_i = 0 \tag{9-46} i=1Nαiyi=0(9-46)

C − α i − μ i = 0 (9-47) C - \alpha_i - \mu_i = 0 \tag{9-47} Cαiμi=0(9-47)

将式(9-45)~式(9-47)代入式(9-41),有:

min ⁡ w , b , ξ L ( w , b , ξ , α , μ ) = − 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) + ∑ i = 1 N α i (9-48) \min_{w,b,\xi} \quad L(w, b, \xi, \alpha, \mu) = - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum_{i=1}^{N} \alpha_i \tag{9-48} w,b,ξminL(w,b,ξ,α,μ)=21i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαi(9-48)

然后对 min ⁡ w , b , ξ \min_{w,b,\xi} minw,b,ξ L ( w , b , ξ , α , μ ) L(w,b,\xi,\alpha,\mu) L(w,b,ξ,α,μ) α \alpha α 的极大,可得对偶问题为:

max ⁡ α L ( w , b , ξ , α , μ ) = − 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) + ∑ i = 1 N α i s . t . ∑ i = 1 N α i y i = 0 C − α i − μ i = 0 α i ≥ 0 μ i ≥ 0 , i = 1 , 2 , … , N (9-49) \begin{aligned} & \max_\alpha L(w,b,\xi,\alpha,\mu) = -\frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum_{i=1}^N \alpha_i \\ & s.t. \quad \sum_{i=1}^N \alpha_i y_i = 0 \\ & \quad C - \alpha_i - \mu_i = 0 \\ & \quad \alpha_i \geq 0 \\ & \quad \mu_i \geq 0, \quad i = 1, 2, \dots, N \tag{9-49} \end{aligned} αmaxL(w,b,ξ,α,μ)=21i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαis.t.i=1Nαiyi=0Cαiμi=0αi0μi0,i=1,2,,N(9-49)

将式(9-49)的第2~4个约束条件式进行变换,消除变量 μ i \mu_i μi 后可简化约束条件为:
0 ≤ α i ≤ C (9-50) 0 \leq \alpha_i \leq C \tag{9-50} 0αiC(9-50)

联合式(9-48)和式(9-49),并将极大化问题转化为极小化问题,即式(9-40)的对偶问题。跟线性可分支持向量机求解方法一样,近似线性可分问题也是通过求解对偶问题而得到原始问题的解,进而确定线性分隔超平面和分类决策函数。

假设 α ∗ = ( α 1 ∗ , α 2 ∗ , … , α N ∗ ) T \alpha^* = (\alpha_1^*, \alpha_2^*, \dots, \alpha_N^*)^T α=(α1,α2,,αN)T 是对偶最优化问题式(9-40)的解,根据拉格朗日对偶理论相关推论,式(9-40)满足KKT(Karush-Kuhn-Tucker)条件,有:
∂ L ∂ w = w ∗ − ∑ i = 1 N α i ∗ y i x i = 0 (9-51) \frac{\partial L}{\partial w} = w^* - \sum_{i=1}^N \alpha_i^* y_i x_i = 0 \tag{9-51} wL=wi=1Nαiyixi=0(9-51)

∂ L ∂ b = − ∑ i = 1 N α i ∗ y i = 0 (9-52) \frac{\partial L}{\partial b} = -\sum_{i=1}^N \alpha_i^* y_i = 0 \tag{9-52} bL=i=1Nαiyi=0(9-52)

∂ L ∂ ξ = C − α ∗ − μ ∗ = 0 (9-53) \frac{\partial L}{\partial \xi} = C - \alpha^* - \mu^* = 0 \tag{9-53} ξL=Cαμ=0(9-53)

α i ∗ ( y i ( w ∗ ⋅ x i + b ∗ ) − 1 + ξ i ∗ ) = 0 (9-54) \alpha_i^*(y_i(w^* \cdot x_i + b^*) - 1 + \xi_i^*) = 0 \tag{9-54} αi(yi(wxi+b)1+ξi)=0(9-54)

μ i ∗ ξ i ∗ = 0 (9-55) \mu_i^* \xi_i^* = 0 \tag{9-55} μiξi=0(9-55)

y i ( w ∗ ⋅ x i + b ∗ ) − 1 + ξ i ∗ ≥ 0 (9-56) y_i(w^* \cdot x_i + b^*) - 1 + \xi_i^* \geq 0 \tag{9-56} yi(wxi+b)1+ξi0(9-56)

ξ i ∗ ≥ 0 (9-57) \xi_i^* \geq 0 \tag{9-57} ξi0(9-57)

α i ∗ ≥ 0 (9-58) \alpha_i^* \geq 0 \tag{9-58} αi0(9-58)

μ i ∗ ≥ 0 , i = 1 , 2 , … , N (9-59) \mu_i^* \geq 0, \quad i = 1, 2, \dots, N \tag{9-59} μi0,i=1,2,,N(9-59)

可解得:
w ∗ = ∑ i = 1 N α i ∗ y i x i (9-60) w^* = \sum_{i=1}^N \alpha_i^* y_i x_i \tag{9-60} w=i=1Nαiyixi(9-60)

b ∗ = y j − ∑ i = 1 N α i ∗ y i ( x i ⋅ x j ) (9-61) b^* = y_j - \sum_{i=1}^N \alpha_i^* y_i (x_i \cdot x_j) \tag{9-61} b=yji=1Nαiyi(xixj)(9-61)

以上就是近似线性可分支持向量机的基本推导过程。从过程来看,近似线性可分问题求解推导与线性可分问题的求解推导非常类似。


以下是部分公式更加详细的解释:
公式 9-37
公式 9-38
公式 9-40
公式 9-41
公式 9-50
公式 9-51 ~ 9-59

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/57341.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UI 组件的二次封装

UI 组件的二次封装是指,在基础 UI 库的组件上进行自定义封装,以实现更贴合业务需求的功能和样式。通过二次封装,可以增强组件的复用性、便捷性和一致性,简化业务代码,同时降低后续维护成本。 1. 二次封装的原理 二次…

ELK + Filebeat + Spring Boot:日志分析入门与实践(二)

目录 一、环境 1.1 ELKF环境 1.2 版本 1.3 流程 二、Filebeat安装 2.1 安装 2.2 新增配置采集日志 三、logstash 配置 3.1 配置输出日志到es 3.2 Grok 日志格式解析 3.2 启动 logstash ​3.3 启动项目查看索引 一、环境 1.1 ELKF环境 springboot项目:w…

二百七十、Kettle——ClickHouse中增量导入清洗数据错误表

一、目的 比如原始数据100条,清洗后,90条正确数据在DWD层清洗表,10条错误数据在DWD层清洗数据错误表,所以清洗数据错误表任务一定要放在清洗表任务之后。 更关键的是,Hive中原本的SQL语句,放在ClickHouse…

Mysql通过zip安装使用

文章目录 MySQL安装步骤‌下载MySQL安装包‌解压并配置‌环境变量‌初始化并启动数据库‌MySQL配置步骤验证安装是否成功‌ MySQL重新启动Linux系统windows系统 MySQL安装步骤‌ 下载MySQL安装包‌ 访问MySQL官方网站(https://dev.mysql.com/downloads/&#xff0…

串口读数据无法获取的原因

一般无法读取导数据,通常是读数据时间设定有问题,通过修改设定时间就可以轻松读取数据. BOOL OpenComPort(const int port,int flag) { CString strComCode; strComCode.Format(_T(“COM%d”),port); hComCreateFile(strComCode,//COM1口 GENERIC_READ|GENERIC_WRITE, //允许读…

面向对象编程——抽象类和接口

抽象类的特性: 抽象类不能直接实例化对象抽象方法不能被private、final、static修饰的抽象类必须被继承,并且继承后子类必须要重写父类中的抽象方法,否则子类也是抽象类,必须使用abstract修饰抽象类中不一定包含抽象方法&#xf…

Vue3与pywebview获取本地文件夹的绝对路径

1、Vue端 <template><div><button click"selectFolder">选择文件夹</button><button click"showFolder">显示文件夹</button><p>{{ folderPath }}</p></div> </template><script> exp…

一篇文章入门梅尔频率倒谱系数

文章目录 梅尔频率倒谱系数MFCC预处理预加重分帧加窗 FFT&#xff08;Fourier-Transform&#xff09;功率谱滤波器组梅尔频率倒谱系数&#xff08;MFCC&#xff09;均值归一化总结 参考文献 梅尔频率倒谱系数MFCC 梅尔倒谱系数&#xff08;Mel-scale FrequencyCepstral Coeffi…

vue 实现图片预览功能并显示在弹窗的最上方

vue 实现图片预览功能并显示在弹窗的最上方 在 components 下新建一个文件夹 ImagePreview 使用 preview-teleported 来实现图片穿透功能 让预览的图片显示在最上方 代码如下&#xff1a; <template><el-image:src"${realSrc}"fit"cover":sty…

Qt的信号槽机制学习一

一、Qt理论知识简记 &#xff08;一&#xff09;信号与槽[1] 信号与槽是Qt编程的基础&#xff0c;其使得处理界面上各个组件的交互操作变得比较直观和简单&#xff0c;GUI&#xff08;Graphical User Interface&#xff09;程序设计的主要工作就是对界面上各组件的信号进行相应…

程序员的相亲囧途:三万相亲费,能否换回真爱?

在快节奏的都市生活中&#xff0c;相亲已成为不少单身男女寻找另一半的重要途径。然而&#xff0c;宁波的唐先生却在这条路上遭遇了不小的挫折。28岁的他&#xff0c;身高1米78&#xff0c;本应是相亲市场上的“香饽饽”&#xff0c;却在“我主良缘”交了三万块钱相亲费后&…

【Android】使用TextView实现按钮开关代替Switch开关

介绍 Android 本身自己带的有开关控件&#xff0c;但是很多时候我们是不愿意使用这种开关的&#xff0c;感觉使用起来比较麻烦&#xff0c;特别是遇到需要延迟操作的情况。 比如有一个需求是这样的&#xff1a;我们需要打开一个设置&#xff0c;但是这个设置是否打开需要经过…

关于Java中**optional,stream,lambda**

关于Java中optional&#xff0c;stream&#xff0c;lambda Lambda表达式高效使用 // 1. 结合Comparator进行排序 List<Person> persons Arrays.asList(new Person("John", 25),new Person("Alice", 22),new Person("Bob", 30) );// 按年…

Soanrquber集成Gitlab 之 导入Gitlab项目

集成Gitlab 之 导入Gitlab项目 说明&#xff1a; Sonarquber里面的项目&#xff0c;顺便设置&#xff0c;只要在集成CI的时候&#xff0c;使用这个项目的项目标识即可。 当然项目名称一一对应是最好的了&#xff0c;所以这里讲导入Gitlab的项目&#xff0c;项目名称一一对应&…

AI自媒体变现路径大盘点!建议收藏!

当下的我做为一人公司或者超级个体为目标的创业模式&#xff0c;无论是在写作、图文和短视频输出方面&#xff0c;我都是运用了N个AI工具来提升我的生产力。 这种创业模式就是一个人N个AI的模式&#xff0c;我们可以通过AI工具做提效来赚取差价&#xff0c;以时间复利来累计财…

SQL 数据汇总与透视的实用案例

SQL 数据汇总与透视的实用案例 一、前言1. 案例背景2. 数据准备3. 数据透视4. 主查询整合数据5. 结果分析 二、总结 一、前言 在数据分析和报表生成中&#xff0c;SQL 查询的灵活性和强大功能使其成为不可或缺的工具。在许多实际场景中&#xff0c;我们需要从复杂的数据集中提…

Python的协程与传统的线程相比,是否能更有效地利用计算资源?在多大程度上,这种效率是可测量的?如何量化Python协程的优势|协程|线程|性能优化

目录 1. 协程与线程的基本概念 1.1 线程 1.2 协程 2. 协程的实现原理 2.1 基本示例 3. 协程与线程的效率对比 3.1 资源利用率 3.2 性能测试 4. 使用场景分析 4.1 适用场景 4.2 不适用场景 5. 性能监测与测量 5.1 使用时间记录 5.2 使用第三方库 6. 总结与展望 P…

自然语言处理领域中的两个主要技术挑战:实体歧义和上下文管理

自然语言处理领域中的两个主要技术挑战&#xff1a;实体歧义和上下文管理 这段话详尽地讨论了在自然语言处理领域中的两个主要技术挑战&#xff1a;实体歧义和上下文管理。具体地&#xff0c;它解释了如何识别并解决在同一句子中相同日期和地点被赋予多种不同含义的问题。此处…

服务器文件访问协议

服务器文件访问协议 摘要NFS、CIFS、SMB概述SMBWindows SMBLinux SambaPython SMB NFS 摘要 本篇博客参考网上文档和博客&#xff0c;对基于网络的服务器/主机的文件访问、共享协议进行简要总结&#xff0c;完整内容将会不断更新&#xff0c;以便加深理解和记忆 NFS、CIFS、S…

python通过translate库实现中英文翻译

功能介绍 translate库&#xff0c;可以轻松实现中英文的翻译。 使用pip直接安装translate库&#xff1a;pip install translate translate库github地址 命令行直接调用 当使用pip安装以后&#xff0c;就得到了translate-cli的命令&#xff0c;此时可以通过该命令直接实现翻…