【优选算法篇】前缀之序,后缀之章:于数列深处邂逅算法的光与影

文章目录

  • C++ 前缀和详解:基础题解与思维分析
    • 前言
    • 第一章:前缀和基础应用
      • 1.1 一维前缀和模板题
        • 解法(前缀和)
        • 图解分析
        • C++代码实现
        • 易错点提示
        • 代码解读
        • 题目解析总结
      • 1.2 二维前缀和模板题
        • 解法(二维前缀和)
        • 图解分析
        • C++代码实现
        • 易错点提示
        • 代码解读
        • 题目解析总结
      • 1.3 寻找数组的中⼼下标(easy)
        • 解法(前缀和)
        • 图解分析
        • C++代码实现
        • 更简单的解法
          • 优化后的 C++代码实现
        • 易错点提示
        • 代码解读
      • 28. 除⾃⾝以外数组的乘积(medium)
        • 解法(前缀积数组)
        • 图解分析
        • C++代码实现
        • 更简单的解法
          • 优化后的 C++代码实现
        • 易错点提示
        • 代码解读
    • 写在最后

C++ 前缀和详解:基础题解与思维分析

💬 欢迎讨论:如有疑问或见解,欢迎在评论区留言互动。

👍 点赞、收藏与分享:如觉得这篇文章对您有帮助,请点赞、收藏并分享!
🚀 分享给更多人:欢迎分享给更多对 C++ 感兴趣的朋友,一起学习前缀和的基础与进阶!


前言

前缀和是一种经典的算法技巧,用于高效地计算数组的某一区间内的元素和。它通过预处理一个前缀和数组,将区间求和的问题转化为常数时间的查询操作。本篇博客将详细讲解前缀和的原理,并结合题目解析,让大家掌握这一高效的算法方法。


第一章:前缀和基础应用

1.1 一维前缀和模板题

题目链接:【模板】一维前缀和

题目描述

给定一个长度为 n 的整数数组 arrq 个查询,每个查询由两个整数 lr 组成,表示区间 [l, r]。请计算出每个区间内所有元素的和。

示例 1

  • 输入:arr = [1, 2, 3, 4, 5], q = 2, 查询区间为 [(1, 3), (2, 4)]
  • 输出:[6, 9]
  • 解释:区间 [1, 3] 的元素和为 1 + 2 + 3 = 6,区间 [2, 4] 的元素和为 2 + 3 + 4 = 9

提示

  • 1 <= n, q <= 100000
  • -10000 <= arr[i] <= 10000

解法(前缀和)

算法思路

a. 预处理前缀和数组

  • 使用 dp[i] 表示从数组起始位置到第 i 个元素的累加和。
  • 递推公式为:
    dp[i] = dp[i - 1] + arr[i];
    
  • 通过一次遍历即可构建前缀和数组,时间复杂度为 O(n)

b. 利用前缀和快速计算区间和

  • 使用前缀和数组,可以在 O(1) 的时间内计算出任意区间 [l, r] 的和:
    sum(l, r) = dp[r] - dp[l - 1];
    
  • 这个公式的核心在于利用 dp[r] 存储了 [1, r] 区间的和,而 dp[l - 1] 则存储了 [1, l-1] 区间的和,二者相减即得 [l, r] 区间内的和。

图解分析

假设 arr = [1, 2, 3, 4, 5],查询区间为 [(1, 3), (2, 4)]

  1. 前缀和数组构建

    • dp[1] = arr[1] = 1
    • dp[2] = dp[1] + arr[2] = 1 + 2 = 3
    • dp[3] = dp[2] + arr[3] = 3 + 3 = 6
    • dp[4] = dp[3] + arr[4] = 6 + 4 = 10
    • dp[5] = dp[4] + arr[5] = 10 + 5 = 15
  2. 查询区间和计算

    • 对于区间 [1, 3]sum(1, 3) = dp[3] - dp[0] = 6
    • 对于区间 [2, 4]sum(2, 4) = dp[4] - dp[1] = 9

前缀和数组

Indexarr[i]dp[i]
111
223
336
4410
5515

C++代码实现
#include <iostream>
#include <vector>
using namespace std;const int N = 100010;
vector<long long> arr(N), dp(N); // 使用 vector 存储数组和前缀和
int n, q; // n 为数组大小,q 为查询次数int main() 
{cin >> n >> q;// 读取数组元素for(int i = 1; i <= n; i++) cin >> arr[i];// 构建前缀和数组,dp[i] 表示从 arr[1] 到 arr[i] 的累加和for(int i = 1; i <= n; i++) dp[i] = dp[i - 1] + arr[i];// 处理每个查询while(q--){int l, r;cin >> l >> r;// 输出区间和 [l, r]cout << dp[r] - dp[l - 1] << endl;}return 0;
}

易错点提示
  1. 前缀和数组的下标范围

    • dp[i] 表示从 arr[1]arr[i] 的累加和,因此在构建前缀和数组时需要从 i = 1 开始,而非 0。读取 arr 时也应从 1 开始。
  2. 边界条件处理

    • l = 1 时,dp[l - 1]0。确保 dp[0] 初始化为 0,以避免边界查询时产生错误。
  3. 数组长度与内存大小

    • arrdp 的长度都最少需要定义为 n+1 以确保不会越界。尤其在大规模数据时,需要合理定义 N 以避免内存溢出。

代码解读

在这段代码中,我们首先通过输入构建了原数组 arr 和相应的前缀和数组 dp。然后通过预处理后的 dp 数组,能够快速计算出任意查询区间 [l, r] 的和。
整个过程只需要 O(n) 的时间构建前缀和数组,再通过 O(1) 的时间解决每个区间和查询,使得在多次查询场景下效率非常高。


题目解析总结

前缀和是一种非常常用的算法技巧,特别是在处理区间求和问题时,能够显著优化计算效率。通过一次遍历构建前缀和数组,我们可以在后续查询中轻松地利用前缀和的特性,实现对任意区间的快速求和。
这道题作为前缀和的模板题,帮助我们掌握了前缀和的核心思想与基本操作。通过它,我们能为后续更复杂的区间问题打下坚实的基础。


1.2 二维前缀和模板题

题目链接:【模板】二维前缀和

题目描述

给定一个大小为 n × m 的矩阵 matrixq 个查询,每个查询由四个整数 x1, y1, x2, y2 组成,表示一个子矩阵的左上角 (x1, y1) 和右下角 (x2, y2)。请计算出每个子矩阵内所有元素的和。

示例 1

  • 输入:matrix = [[1, 2], [3, 4]], q = 1, 查询区间为 [(1, 1, 2, 2)]
  • 输出:[10]
  • 解释:子矩阵包含所有元素 1 + 2 + 3 + 4 = 10

提示

  • 1 <= n, m <= 1000
  • -10000 <= matrix[i][j] <= 10000

解法(二维前缀和)

算法思路

类似于一维前缀和,我们可以预处理一个前缀和矩阵 sum,使得 sum[i][j] 表示从矩阵起点 (1, 1) 到位置 (i, j) 的所有元素的累加和。利用这个前缀和矩阵,可以在 O(1) 时间内求出任意子矩阵的和。

步骤分为两部分:

  1. 构建前缀和矩阵

    • 构建时,我们在矩阵的顶部和左侧添加一行和一列的 0,以简化边界处理。
      在这里插入图片描述

    • 前缀和矩阵的递推公式为:

      sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + matrix[i - 1][j - 1];
      
  2. 利用前缀和矩阵计算子矩阵和

    • 对于左上角 (x1, y1) 和右下角 (x2, y2) 的查询,我们可以通过以下公式计算该子矩阵的和:
      result = sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1];
      

在这里插入图片描述
类比小学就学过的求面积

在这里插入图片描述


图解分析

假设 matrix = [[1, 2], [3, 4]]q = 1,查询区间为 [(1, 1, 2, 2)]

  1. 构建前缀和矩阵

    • 原始矩阵:
      1  2
      3  4
      
    • 构建前缀和矩阵:
      sum = 
      0  0  0
      0  1  3
      0  4  10
      
  2. 查询子矩阵和

    • 对于 x1 = 1, y1 = 1, x2 = 2, y2 = 2
      result = sum[2][2] - sum[0][2] - sum[2][0] + sum[0][0] = 10 - 0 - 0 + 0 = 10
      

C++代码实现
#include <iostream>
#include <vector>
using namespace std;int main() 
{int n, m, q;cin >> n >> m >> q;vector<vector<int>> matrix(n + 1, vector<int>(m + 1, 0));vector<vector<long long>> sum(n + 1, vector<long long>(m + 1, 0));// 读取矩阵数据for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {cin >> matrix[i][j];}}// 构建前缀和矩阵for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + matrix[i][j];}}// 处理查询while(q--) {int x1, y1, x2, y2;cin >> x1 >> y1 >> x2 >> y2;long long result = sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1];cout << result << endl;}return 0;
}

易错点提示
  1. 矩阵下标的处理

    • 构建前缀和矩阵时,注意在 matrix 的基础上偏移一行和一列,以简化边界处理。查询时也需调整下标。
  2. 前缀和公式理解

    • 在计算 sum[i][j] 时,记得同时减去重复计算的 sum[i - 1][j - 1]
  3. 处理大规模输入

    • 对于 n, m 较大的输入,使用 long long 类型存储累加和,以避免整数溢出。

代码解读
  • 时间复杂度:前缀和矩阵的构建时间为 O(n * m),每次查询时间为 O(1),适用于大量查询场景。
  • 空间复杂度:前缀和矩阵 sum 需要 O(n * m) 的额外空间。

题目解析总结

二维前缀和是处理矩阵区域和问题的利器,通过一次性构建前缀和矩阵,可以高效地解决任意子矩阵的求和问题。相比于逐个元素累加的方法,前缀和能大幅减少计算次数,使得算法在面对多次查询时表现更佳。


1.3 寻找数组的中⼼下标(easy)

题目链接:724. 寻找数组的中⼼下标

题目描述

给你⼀个整数数组 nums ,请计算数组的 中⼼下标 。

数组 中⼼下标 是数组的⼀个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。

如果中⼼下标位于数组最左端,那么左侧数之和视为 0,因为在下标的左侧不存在元素。这⼀点对中⼼下标位于数组最右端同样适⽤。

如果数组有多个中⼼下标,应该返回 最靠近左边 的那⼀个。如果数组不存在中⼼下标,返回 -1

示例 1

  • 输入:nums = [1, 7, 3, 6, 5, 6]
  • 输出:3
  • 解释:
    • 中⼼下标是 3
    • 左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11
    • 右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,⼆者相等。

示例 2

  • 输入:nums = [1, 2, 3]
  • 输出:-1
  • 解释:
    • 数组中不存在满⾜此条件的中⼼下标。

示例 3

  • 输入:nums = [2, 1, -1]
  • 输出:0
  • 解释:
    • 中⼼下标是 0
    • 左侧数之和 sum = 0,(下标 0 左侧不存在元素),
    • 右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0

提示

  • 1 <= nums.length <= 10^4
  • -1000 <= nums[i] <= 1000

解法(前缀和)

算法思路

根据中⼼下标的定义,除了中⼼下标的元素外,该元素左边的「前缀和」等于该元素右边的「后缀和」。

因此,我们可以先预处理两个数组,一个表示前缀和,另一个表示后缀和。然后,通过遍历来找到满足条件的中⼼下标。

  1. 构建前缀和数组 lsum

    • lsum[i] 表示 nums 从开始到位置 i - 1 的所有元素的和,即 [0, i - 1] 区间的累加和。
    • 构建前缀和数组 lsum 的递推公式为:
      lsum[i] = lsum[i - 1] + nums[i - 1];
      
  2. 构建后缀和数组 rsum

    • rsum[i] 表示 nums 从位置 i + 1 到最后一个元素的所有元素的和,即 [i + 1, n - 1] 区间的累加和。
    • 构建后缀和数组 rsum 的递推公式为:
      rsum[i] = rsum[i + 1] + nums[i + 1];
      
  3. 枚举中⼼下标

    • 遍历数组,比较每个位置的前缀和 lsum[i] 和后缀和 rsum[i] 是否相等。如果相等,说明该位置就是中⼼下标,直接返回。
    • 若遍历完成仍无满足条件的下标,则返回 -1

图解分析

假设 nums = [1, 7, 3, 6, 5, 6]

  1. 前缀和数组构建

    • lsum[0] = 0 (表示 nums 的左侧没有元素)
    • lsum[1] = lsum[0] + nums[0] = 0 + 1 = 1
    • lsum[2] = lsum[1] + nums[1] = 1 + 7 = 8
    • lsum[3] = lsum[2] + nums[2] = 8 + 3 = 11
    • lsum[4] = lsum[3] + nums[3] = 11 + 6 = 17
    • lsum[5] = lsum[4] + nums[4] = 17 + 5 = 22
  2. 后缀和数组构建

    • rsum[5] = 0 (表示 nums 的右侧没有元素)
    • rsum[4] = rsum[5] + nums[5] = 0 + 6 = 6
    • rsum[3] = rsum[4] + nums[4] = 6 + 5 = 11
    • rsum[2] = rsum[3] + nums[3] = 11 + 6 = 17
    • rsum[1] = rsum[2] + nums[2] = 17 + 3 = 20
    • rsum[0] = rsum[1] + nums[1] = 20 + 7 = 27
  3. 查找中⼼下标

    • 遍历过程中,发现 lsum[3] == rsum[3],即下标 3 满足条件,因此输出 3

前缀和、后缀和数组

Indexnums[i]lsum[i]rsum[i]
01027
17120
23817
361111
45176
56220

C++代码实现
class Solution {
public:int pivotIndex(vector<int>& nums) {// lsum[i] 表示 [0, i - 1] 区间的累加和// rsum[i] 表示 [i + 1, n - 1] 区间的累加和int n = nums.size();vector<int> lsum(n), rsum(n);// 预处理前缀和数组for(int i = 1; i < n; i++)lsum[i] = lsum[i - 1] + nums[i - 1];// 预处理后缀和数组for(int i = n - 2; i >= 0; i--)rsum[i] = rsum[i + 1] + nums[i + 1];// 查找中⼼下标for(int i = 0; i < n; i++) {if(lsum[i] == rsum[i])return i;}return -1;}
};

更简单的解法

该问题还可以通过更为简洁的解法实现,仅需一个变量记录累加的前缀和,节省空间。

优化思路

遍历数组时,如果一个位置 i 满足 2 * 前缀和 + nums[i] == 总和,则它就是中心下标。其原理在于:

  • 对于中心下标 i,数组的左侧和 tmp 与右侧和(总和 - tmp - nums[i])相等。
  • 即满足条件 2 * tmp + nums[i] == 总和

优化后的 C++代码实现
class Solution {
public:int pivotIndex(vector<int>& nums) {int totalSum = 0, tmp = 0;// 计算总和for(int num : nums) {totalSum += num;}// 遍历数组,判断中心下标条件for(int i = 0; i < nums.size(); i++) {if(2 * tmp + nums[i] == totalSum) {return i; // 找到中心下标}tmp += nums[i]; // 更新前缀和}return -1; // 没有找到中心下标}
};

易错点提示
  1. 前缀和和后缀和的下标范围

    • lsum[i] 表示 [0, i - 1] 区间累加和,而 rsum[i] 表示 [i + 1, n - 1] 区间累加和。因此,遍历中我们直接使用 lsum[i] == rsum[i] 即可判断条件。
  2. 边界处理

    • 若中心下标在数组最左端或最右端,需要确保对应的 lsumrsum0,这样才能保证正确的判断。
  3. 多种中心下标

    • 如果存在多个中心下标,返回最左边的那个,因此遍历时找到第一个满足条件的下标即返回。

代码解读

我们先通过遍历构建了 lsumrsum 数组,然后再次遍历数组,找到第一个满足 lsum[i] == rsum[i] 的位置。

  • 时间复杂度O(n),遍历数组的次数为常数次,适合于长度较大的数组。
  • 空间复杂度O(n),额外的前缀和和后缀和数组 lsumrsum

对于优化后的解法:

  • 时间复杂度O(n),仅需一次遍历。
  • 空间复杂度O(1),只使用一个临时变量记录前缀和,显著节省了空间。

28. 除⾃⾝以外数组的乘积(medium)

题目链接:238. 除⾃⾝以外数组的乘积

题目描述

给你⼀个整数数组 nums,返回数组 answer,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积。

题⽬数据保证数组 nums 中任意元素的全部前缀元素和后缀的乘积都在 32 位整数范围内。

请不要使⽤除法,且在 O(n) 时间复杂度内完成此题。

示例 1

  • 输入:nums = [1, 2, 3, 4]
  • 输出:[24, 12, 8, 6]

示例 2

  • 输入:nums = [-1, 1, 0, -3, 3]
  • 输出:[0, 0, 9, 0, 0]

提示

  • 2 <= nums.length <= 10^5
  • -30 <= nums[i] <= 30
  • 保证数组 nums 中任意元素的全部前缀元素和后缀的乘积都在 32 位整数范围内。

进阶:你可以在 O(1) 的额外空间复杂度内完成这个题⽬吗?(出于对空间复杂度分析的⽬的,输出数组不被视为额外空间。)


解法(前缀积数组)

算法思路

由于题目要求不能使用除法,同时要求 O(n) 的时间复杂度,因此我们不能用求出整个数组的乘积然后除以单个元素的方式求解。

可以利用前缀和思想,使用两个数组来记录每个元素的前缀积后缀积,然后将两者相乘得到每个元素除自身以外的乘积。

  1. 定义前缀积数组 lprod

    • lprod[i] 表示 nums 从开始到 i - 1 的所有元素的乘积,即 [0, i - 1] 区间内所有元素的乘积。
    • 构建前缀积数组 lprod 的递推公式为:
      lprod[i] = lprod[i - 1] * nums[i - 1];
      
  2. 定义后缀积数组 rprod

    • rprod[i] 表示 numsi + 1 到数组末尾的所有元素的乘积,即 [i + 1, n - 1] 区间内所有元素的乘积。
    • 构建后缀积数组 rprod 的递推公式为:
      rprod[i] = rprod[i + 1] * nums[i + 1];
      
  3. 计算结果数组

    • 遍历 nums,计算每个位置 i 的结果 ret[i]lprod[i] * rprod[i]
    • 因为 lprod[i] 包含的是 nums[0]nums[i - 1] 的乘积,而 rprod[i] 包含的是 nums[i + 1] 到末尾的乘积,两者相乘即为除 nums[i] 外的所有元素乘积。

图解分析

假设 nums = [1, 2, 3, 4],期望的结果为 [24, 12, 8, 6]

  1. 前缀积数组构建

    • lprod[0] = 1 (初始条件,表示没有元素的乘积)
    • lprod[1] = lprod[0] * nums[0] = 1 * 1 = 1
    • lprod[2] = lprod[1] * nums[1] = 1 * 2 = 2
    • lprod[3] = lprod[2] * nums[2] = 2 * 3 = 6
  2. 后缀积数组构建

    • rprod[3] = 1 (初始条件,表示没有元素的乘积)
    • rprod[2] = rprod[3] * nums[3] = 1 * 4 = 4
    • rprod[1] = rprod[2] * nums[2] = 4 * 3 = 12
    • rprod[0] = rprod[1] * nums[1] = 12 * 2 = 24
  3. 计算最终结果

    • ret[0] = lprod[0] * rprod[0] = 1 * 24 = 24
    • ret[1] = lprod[1] * rprod[1] = 1 * 12 = 12
    • ret[2] = lprod[2] * rprod[2] = 2 * 4 = 8
    • ret[3] = lprod[3] * rprod[3] = 6 * 1 = 6

前缀积、后缀积数组

Indexnums[i]lprod[i]rprod[i]ret[i]
0112424
1211212
23248
34616

C++代码实现
class Solution {
public:vector<int> productExceptSelf(vector<int>& nums) {int n = nums.size();vector<int> lprod(n, 1), rprod(n, 1), ret(n);// 构建前缀积数组for(int i = 1; i < n; i++) {lprod[i] = lprod[i - 1] * nums[i - 1];}// 构建后缀积数组for(int i = n - 2; i >= 0; i--) {rprod[i] = rprod[i + 1] * nums[i + 1];}// 计算结果数组for(int i = 0; i < n; i++) {ret[i] = lprod[i] * rprod[i];}return ret;}
};

更简单的解法

优化思路

我们可以进一步优化空间复杂度到 O(1)。通过仅使用一个 ret 数组来存储结果,并利用它保存前缀积,再遍历一次通过累积的后缀积来更新结果:

  1. 计算前缀积并保存到 ret
  2. 遍历并乘以后缀积:在遍历过程中同时更新后缀积的值,使每个位置的结果在不需要额外的 lprodrprod 数组的情况下得到。

优化后的 C++代码实现
class Solution {
public:vector<int> productExceptSelf(vector<int>& nums) {int n = nums.size();vector<int> ret(n, 1);// 计算前缀积for(int i = 1; i < n; i++) {ret[i] = ret[i - 1] * nums[i - 1];}// 计算后缀积并更新结果int suffixProd = 1;for(int i = n - 1; i >= 0; i--) {ret[i] *= suffixProd;suffixProd *= nums[i];}return ret;}
};

易错点提示
  1. 初始条件

    • lprod[0]rprod[n-1] 都初始化为 1,表示没有元素的乘积。
  2. 空间优化

    • 优化解法中只使用 ret 数组存储前缀积,后续遍历时逐个乘以后缀积。
  3. 避免溢出

    • 题目保证元素乘积在 32 位整数范围内,但实际操作时要避免大数溢出,注意数据类型的使用。

代码解读

在此解法中,我们通过构建前缀积和后缀积的方式实现了在 O(n) 时间复杂度下计算每个位置的乘积。在优化方案中,通过巧妙地在结果数组中存储前缀积并逐步累加后缀积,实现了空间复杂度的优化。

  • 时间复杂度O(n),无论是初始计算前缀积和后缀积,还是单次遍历,时间复杂度都为 O(n)
  • 空间复杂度:原方案为 O(n),优化方案达到 O(1) 的额外空间复杂度。

写在最后

在这片数列的流动之中,我们从前缀和的入门,渐次深入,直抵算法思想的核心。四道基础题如同桥梁,串联起前缀和与后缀积的巧妙应用,从区间求和的简明优雅到排除自身后的乘积演算,每一步都指向数据处理的无限可能。这是算法的序曲,数字的暗涌,如流水般轻盈而深邃。随着思维渐入佳境,我们将在下篇中进一步探索数列的复杂美,揭开更深层的优化思路,与算法之光同行。

以上就是关于【优选算法篇】前缀之序,后缀之章:于数列深处邂逅算法的光与影的内容啦,各位大佬有什么问题欢迎在评论区指正,您的支持是我创作的最大动力!❤️
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/57252.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Xcode 16.1 (16B40) 发布下载 - Apple 平台 IDE

Xcode 16.1 (16B40) 发布下载 - Apple 平台 IDE IDE for iOS/iPadOS/macOS/watchOS/tvOS/visonOS 发布日期&#xff1a;2024 年 10 月 28 日 Xcode 16.1 包含适用于 iOS 18.1、iPadOS 18.1、Apple tvOS 18.1、watchOS 11.1、macOS Sequoia 15.1 和 visionOS 2.1 的 SDK。Xco…

SpringBoot篇(简化操作的原理)

目录 一、代码位置 二、统一版本管理&#xff08;parent&#xff09; 三、提供 starter简化 Maven 配置 四、自动配置 Spring&#xff08;引导类&#xff09; 五、嵌入式 servlet 容器 一、代码位置 二、统一版本管理&#xff08;parent&#xff09; SpringBoot项目都会继…

业务流程顺畅度为何受制于数据失真

在当今数字化驱动的商业环境中&#xff0c;企业的业务流程高度依赖于数据的准确性和完整性。然而&#xff0c;数据失真问题却如同隐匿在流程中的“暗礁”&#xff0c;频繁地给企业的业务流程顺畅度带来严重挑战&#xff0c;进而影响企业的整体运营效率和竞争力。 数据失真的表…

vscode和pycharm在当前工作目录的不同|python获取当前文件目录和当前工作目录

问题背景 相信大家都遇到过一个问题&#xff1a;一个项目在vscode&#xff08;或pycharm&#xff09;明明可以正常运行&#xff0c;但当在pycharm&#xff08;或vscode&#xff09;中时&#xff0c;却经常会出现路径错误。起初&#xff0c;对于这个问题&#xff0c;我也是一知…

基于Java的电商书城系统源码带本地搭建教程

技术框架&#xff1a;jQuery MySQL5.7 mybatis jsp shiro 运行环境&#xff1a;jdk8 IntelliJ IDEA maven3 宝塔面板 系统功能介绍 该系统分为前台展示和后台管理两大模块&#xff0c;前台主要是为消费者服务。该子系统实现了注册&#xff0c;登录&#xff0c; 以及…

闯关leetcode——232. Implement Queue using Stacks

大纲 题目地址内容 解题代码地址 题目 地址 https://leetcode.com/problems/implement-queue-using-stacks/description/ 内容 Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal …

自动化测试覆盖率提升的关键步骤

自动化测试覆盖不足的问题可以通过增加测试用例的数量和质量、引入代码覆盖率分析工具、加强团队的测试意识和技能、优化测试框架和工具、自动化测试与手动测试相结合等方式来解决。其中&#xff0c;引入代码覆盖率分析工具是关键&#xff0c;它可以帮助我们精准地识别未被测试…

手机柔性屏全贴合视觉应用

在高科技日新月异的今天&#xff0c;手机柔性显示屏作为智能手机市场的新宠&#xff0c;以其独特的可弯曲、轻薄及高耐用性特性引领着行业潮流。然而&#xff0c;在利用贴合机加工这些先进显示屏的过程中&#xff0c;仍面临着诸多技术挑战。其中&#xff0c;高精度对位、应力控…

大数据新视界 -- 大数据大厂之大数据重塑影视娱乐产业的未来(4 - 4)

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

近端串扰和远端串扰

近端串扰和远端串扰 近端串扰噪声持续时间长&#xff0c;远端串扰噪声峰值大 远端串扰噪声随耦合长度增加而增大 近端串扰:耦合长度小时&#xff0c;噪声随耦合长度增加而增大 远端串扰具有如下4个特性: 表层走线有远端串扰&#xff0c;内层走线之间可近似认为不存在远端串扰…

opencv学习笔记(5): 图像预处理(图像格式和通道、点运算)

1. 图像格式和通道 1.1 图像格式 图像格式是指计算机存储图像的格式。OpenCV目前支持的图像格式包括Windows位图文件BMP、DIB&#xff0c;JPEG文件JPEG、JPG、JPE&#xff0c;便携式网络图形文件PNG等。 ①. BMP BMP&#xff08;全称Bitmap&#xff0c;位图&#xff09;是Win…

VMware workstation的3种网络类型

虚拟机想要和主机进行通信必须借助网桥或者交换机&#xff0c;VMware workstation提供了3种网络交换机&#xff1a;仅主机类型交换机、NAT类型交换机、桥接类型交换机。 介绍下这三种类型的交换机 仅主机类型 通过VMware workstation添加一个仅主机类型的虚拟交换机后&#…

【Java数据结构】树】

【Java数据结构】树 一、树型结构1.1 概念1.2 特点1.3 树的类型1.4 树的遍历方式1.5 树的表示形式1.5.1 双亲表示法1.5.2 孩子表示法1.5.3 孩子双亲表示法1.5.4 孩子兄弟表示法 二、树型概念&#xff08;重点&#xff09; 此篇博客希望对你有所帮助&#xff08;帮助你了解树&am…

Java Lock ConditionObject 总结

前言 相关系列 《Java & Lock & 目录》&#xff08;持续更新&#xff09;《Java & Lock & ConditionObject & 源码》&#xff08;学习过程/多有漏误/仅作参考/不再更新&#xff09;《Java & Lock & ConditionObject & 总结》&#xff08;学习…

SLAM|1. 相机投影及相机畸变

一个能思考的人&#xff0c;才真是一个力量无边的人。——巴尔扎克 本章主要内容&#xff1a; 1.针孔相机模型 2.相机成像的几个坐标系图像 3.畸变及相机标定 本节主要介绍在照相机拍摄过程中&#xff0c;现实物体如何跟照片上的像素关联起来&#xff0c;具体涉及相机成像的物…

服务器数据恢复—异常断电导致服务器挂载分区无法访问的数据恢复案例

服务器数据恢复环境&#xff1a; 某品牌服务器同品牌存储&#xff0c;Linux centos7EXT4文件系统。 服务器故障&#xff1a; 意外断电导致服务器操作系统不能正常启动。经过修复后系统可以正常启动&#xff0c;但是挂载的分区无法正常访问。使用fsck修复这个问题分区&#xff…

[含文档+PPT+源码等]精品基于PHP实现的培训机构信息管理系统的设计与实现

基于PHP实现的培训机构信息管理系统的设计与实现背景&#xff0c;可以从以下几个方面进行阐述&#xff1a; 一、社会发展与教育需求 随着经济的不断发展和人口数量的增加&#xff0c;教育培训行业迎来了前所未有的发展机遇。家长对子女教育的重视程度日益提高&#xff0c;课外…

基于SSM+小程序的童装商城管理系统(商城3)

&#x1f449;文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1、项目介绍 基于SSM小程序的童装商城管理系统实现了管理员及用户。 1、管理员实现了 首页、个人中心、用户管理、分类列表管理、童装商城管理、系统管理、订单管理。 2、用户实现了 注册、登录、首…

行为设计模式 -命令模式- JAVA

命令模式 一.简介二. 案例2.1 接收者&#xff08;Receiver&#xff09;2.2 命令接口实现对象&#xff08;ConcreteCommand&#xff09;2.3 调用者&#xff08; invoker&#xff09;2.4 获取Receiver对象2. 5 装配者客户端测试 三. 结论3.1 要点3.2 示例 前言 本设计模式专栏写了…

LCR 024. 反转链表 最细图片逐行解析过程

LCR 024. 反转链表 给定单链表的头节点 head &#xff0c;请反转链表&#xff0c;并返回反转后的链表的头节点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1]示例 2&#xff1a; 输入&#xff1a;head [1,2] 输出&#xff1a;[2,1]示例…