自动驾驶性能分析时,非常有用的两个信息

自动驾驶的关键路径如下,传感器的数据发送给感知模块;感知模块根据传感器数据来确定车辆所处的环境,比如前方有没有障碍物,是不是和车道线保持着适当的距离等;感知处理之后的数据传递给规控模块,规控根据车辆当前所处的环境来规划车辆的路线和加减速等;最后规控的结果要发送到底盘/动力来做真正的执行。

在自动驾驶的关键路径中,对确定性要求是非常高的,因为车辆是一个安全产品,一旦某个环节消耗的时间不符合确定性的要求,那么会造成比较大的影响。比如车辆前方有行人,那么车辆就需要及时刹停,不可延误。

确定性,考虑的是最恶劣的情况,假如规控模块要求,每次处理规控任务的处理时间不能超过2ms,那么就是要求无论系统运行在什么环境下,当前系统的负载是怎么样的,规控任务的处理时间都不能超过2ms。也就是说如果车辆连续运行了一周,假如规控运行的次数是1000万次,那么也不允许有一次超过2ms的。

1获取线程实际消耗的cpu时间

如下代码,如果要获取planning函数执行消耗的时间。在相当长的一段时间,都是直接获取CLOCK_BOOTTIME这种clock id的时间,这种时间都是墙上时间。在很多时候用这种时间来表示任务消耗的也是没有问题的,但是如果进程中发生了睡眠,发生了阻塞,使用这种时间就不准确了,这种时间不能表示任务实际消耗的cpu时间。

通过函数pthread_getcpuclockid获取的clock,表示cpu时间,也就是线程实际占用的cpu的时间。

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <time.h>
#include <pthread.h>void planning() {int counter = 0;for(int i = 0; i < 10000; i++) {counter++;}for (int i = 0; i < 5; i++) {sleep(1);}
}int main() {clockid_t clock_id;struct timespec start_time1;struct timespec end_time1;struct timespec start_time2;struct timespec end_time2;pthread_getcpuclockid(pthread_self(), &clock_id);clock_gettime(clock_id, &start_time1);clock_gettime(CLOCK_BOOTTIME, &start_time2);planning();clock_gettime(clock_id, &end_time1);clock_gettime(CLOCK_BOOTTIME, &end_time2);printf("real time:%ldns\n", (end_time1.tv_sec * 1000 * 1000 * 1000 + end_time1.tv_nsec) - (start_time1.tv_sec * 1000 * 1000 * 1000 + start_time1.tv_nsec));printf("wall time:%ldns\n", (end_time2.tv_sec * 1000 * 1000 * 1000 + end_time2.tv_nsec) - (start_time2.tv_sec * 1000 * 1000 * 1000 + start_time2.tv_nsec));return 0;
}

运行结果如下,cpu clock id显示的时间是线程实际消耗的时间,是514微秒左右;wall time是5秒。

2获取线程调度次数

在linux中进程的status文件中显示了线程调度的次数。最后两行表示线程调度次数,voluntary_ctxt_switches表示线程主动调度的次数,比如当线程睡眠,IO阻塞时,会触发线程调度,这时的调度就是自愿调度;nonvoluntary_ctxt_switches表示线程非自愿调度的次数,比如当线程的时间片用完,被调度器强制调度,这种情况就是非自愿调度。

可以通过该文件获取调度次数,可以在调用planning之前获取线程的调度次数,返回之后再次获取调度次数,两者的调度次数差就基本上能表示在planning执行过程中发生的调度次数。这里之所以说是基本上,而不是绝对,因为在获取调度次数到planning真正被执行,以及planning返回到获取调度次数之间,也有可能发生调度。

root@wangyanlong-virtual-machine:/home/wangyanlong/test# cat /proc/12744/status
Name:   a.out
Umask:  0022
State:  S (sleeping)
Tgid:   12744
Ngid:   0
Pid:    12744
PPid:   2374
TracerPid:      0
Uid:    0       0       0       0
Gid:    0       0       0       0
FDSize: 256
Groups: 0 999
NStgid: 12744
NSpid:  12744
NSpgid: 12744
NSsid:  2294
VmPeak:     2712 kB
VmSize:     2644 kB
VmLck:         0 kB
VmPin:         0 kB
VmHWM:      1024 kB
VmRSS:      1024 kB
RssAnon:               0 kB
RssFile:            1024 kB
RssShmem:              0 kB
VmData:       92 kB
VmStk:       132 kB
VmExe:         4 kB
VmLib:      1796 kB
VmPTE:        36 kB
VmSwap:        0 kB
HugetlbPages:          0 kB
CoreDumping:    0
THP_enabled:    1
Threads:        1
SigQ:   0/15188
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: 0000000000000000
SigIgn: 0000000000000000
SigCgt: 0000000000000000
CapInh: 0000000000000000
CapPrm: 000001ffffffffff
CapEff: 000001ffffffffff
CapBnd: 000001ffffffffff
CapAmb: 0000000000000000
NoNewPrivs:     0
Seccomp:        0
Seccomp_filters:        0
Speculation_Store_Bypass:       thread vulnerable
SpeculationIndirectBranch:      conditional enabled
Cpus_allowed:   ffffffff,ffffffff,ffffffff,ffffffff
Cpus_allowed_list:      0-127
Mems_allowed:   00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000001
Mems_allowed_list:      0
voluntary_ctxt_switches:        42
nonvoluntary_ctxt_switches:     0
root@wangyanlong-virtual-machine:/home/wangyanlong/test#

有时候,当我们统计出来wall time比较大的时候,就说这个任务消耗的时间多,这样的说服力是比较弱的。这个时候我们就需要获取线程实际消耗的时间结合调度次数,来进行分析。

(1)如果real time和wall time都比较大,那么说明就是任务执行实际消耗的时间长,需要对任务本身的逻辑进行优化。

(2)如果real time比较小,wall time比较大,那么可能有两种情况

①在任务执行期间发生了调度,这个时候就需要通过绑核或者提高线程的优先级等方式来保证在任务执行期间不会发生调度。

②任务中存在阻塞的操作,等待一个条件满足,比如等待一个IO条件,等待一个mutex等,要结合代码进一步分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/57204.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Spring】Cookie与Session

&#x1f490;个人主页&#xff1a;初晴~ &#x1f4da;相关专栏&#xff1a;计算机网络那些事 一、Cookie是什么&#xff1f; Cookie的存在主要是为了解决HTTP协议的无状态性问题&#xff0c;即协议本身无法记住用户之前的操作。 "⽆状态" 的含义指的是: 默认情况…

【大模型系列】Mini-InternVL(2024.10)

Paper&#xff1a;https://arxiv.org/pdf/2410.16261Github&#xff1a;https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat/shell/mini_internvlAuthor&#xff1a;Zhangwei Gao et al. 上海人工智能实验室 文章目录 0 总结(省流版)1 模型结构1.1 InternViT-300M…

MySQL 数据库备份与恢复全攻略

MySQL 数据库备份与恢复全攻略 引言 在现代应用中&#xff0c;数据库是核心组件之一。无论是个人项目还是企业级应用&#xff0c;数据的安全性和完整性都至关重要。为了防止数据丢失、损坏或意外删除&#xff0c;定期备份数据库是必不可少的。本文将详细介绍 MySQL 数据库的备…

大语言模型数据流程源码解读(基于llama3模型)

文章目录 前言一、数据进入LlamaForCausalLM(LlamaPreTrainedModel)类二、数据进入LlamaModel(LlamaPreTrainedModel)类1、input_ids的embedding编码2、position_ids位置获取3、causal_mask因果mask构建1、causal_mask调用2、因果mask代码解读(_update_causal_mask)4、hidden_s…

Docker镜像的创建、修改与导出

Docker镜像的创建、修改与导出 前言一、创建Docker镜像1. 基于已有镜像创建方法一:修改现有镜像方法二:使用Dockerfile通过源码编译安装nginx二、修改Docker镜像1. 基于已有镜像创建新镜像方法一:修改现有镜像2. 使用`docker commit`命令创建新镜像方法一:提交正在运行的容…

Depcheck——专门用于检测 JavaScript 和 Node.js 项目中未使用依赖项的工具

文章目录 Depcheck 是什麽核心功能&#x1f4da;检测未使用的依赖&#x1f41b;检测缺失的依赖✨支持多种文件类型&#x1f30d;可扩展性 安装与使用1. 安装 Depcheck2. 使用 Depcheck Depcheck 的应用总结项目源码&#xff1a; Depcheck 是什麽 来看一个常见错误场景&#x1…

Sqoop的安装配置及使用

Sqoop安装前需要检查之前是否安装了Tez,否则会产生版本或依赖冲突&#xff0c;我们需要移除tez-site.xml&#xff0c;并将hadoop中的mapred-site.xml配置文件中的mapreduce驱动改回成yarn&#xff0c;然后分发到其他节点&#xff0c;hive里面配置的tez也要移除&#xff0c;然后…

sqoop抽取数据报驱动包不存在的问题

sqoop抽取数据报驱动包不存在的问题 报错示例:需要把相应的jar包放到sqoop的lib目录下: 可以正常查询

SpringBoot后端开发常用工具详细介绍——flyway数据库版本控制工具

文章目录 什么是flyway简介为什么要使用flyway 流程介绍整合springboot添加pom文件配置flyway向resource/db/migration添加sql文件 注意事项1. 迁移报错2. 迁移顺序 参考 什么是flyway 简介 为什么要使用flyway 我们在开发时往往会有这样一种情况&#xff1a; 进行软件开发…

HCIP-HarmonyOS Application Developer V1.0 笔记(一)

HarmonyOS的系统特性 硬件互助&#xff0c;资源共享;一次开发&#xff0c;多端部署;统一OS&#xff0c;弹性部署。 分布式软总线&#xff1a;分布式任务调度、分布式数据管理、分布式硬件虚拟化的基座 18N的独立设备 1个手机&#xff0c;8种设备&#xff08;车机&#xff0c…

深入解析HTTP与HTTPS的区别及实现原理

文章目录 引言HTTP协议基础HTTP响应 HTTPS协议SSL/TLS协议 总结参考资料 引言 HTTP&#xff08;HyperText Transfer Protocol&#xff09;超文本传输协议是用于从Web服务器传输超文本到本地浏览器的主要协议。随着网络安全意识的提高&#xff0c;HTTPS&#xff08;HTTP Secure…

Docker搭建基于Nextcloud的个人云盘/私有云盘/个人相册/家庭NAS

安装配置Docker 官方安装文档&#xff1a;https://docs.docker.com/engine/install/ Docker常用命令&#xff1a;https://blog.csdn.net/qq_43003203/article/details/139532097?spm1001.2014.3001.5502 Docker镜像仓库配置方法和国内常用镜像仓库地址&#xff1a; 输入&a…

杂项笔记

这个好像如果如果分配空间就会执行 这个扩容好像会进行拷贝 4 没懂 X x 0; X x1 {0,0}; 都会调用X::X(int x1, int x2 0)

腾讯通低成本替代方案:支持银河麒麟及统信等国产系统和移动端

一、腾讯通继续使用的核心痛点 自腾讯通停更及官网下架后&#xff0c;用户获取更新、技术支持和资源下载的渠道被切断&#xff0c;面临以下无法解决的关键问题&#xff1a; ● 在国产系统及移动端无法使用&#xff1a;腾讯通仅兼容Windows与MAC系统&#xff0c;致使用户在国产…

vue路由的基本使用

vue路由的基本使用 vue-router简介一、路由配置和使用1、安装2、创建路由实例2、在组件中引用路由 router-view ,如APP根组件中直接引用&#xff1a;3、最后还需要把路由挂载到APP实例中&#xff0c;在main.js中注册路由&#xff1a; 二、路由重定向与别名三、声明式导航1、传统…

大模型低资源部署策略

文章目录 解码效率分析大模型训练后量化方法经验性分析与相关结论由于大模型的参数量巨大,在解码阶段需要占用大量的显存资源,因而在实际应用中的部署代价非常高。在本文中,我们将介绍一种常用的模型压缩方法,即模型量化(ModelQuantization),来减少大模型的显存占用,从…

基于Springboot+微信小程序的“学课助手”小程序 (含源码数据库)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 该系统…

如何将原本打开Edge呈现出的360浏览器,更换成原本的Edge页面或者百度等其他页面

每次打开Edge浏览器&#xff0c;都会呈现出360浏览器的页面&#xff0c;很烦。以下将说明如果将呈现出的360浏览器&#xff0c;更换成原本的Edge页面或者百度等其他页面。 1.找到你的控制面板&#xff0c;点击卸载程序。 2. 找到360安全卫士&#xff0c;右键单击更改/卸载。 3…

云原生笔记

#1024程序员节|征文# 单页应用(Single-Page Application&#xff0c;SPA) 云原生基础 云原生全景内容宽泛&#xff0c;以至于刚开始就极具挑战性。 云原生应用是高度分布式系统&#xff0c;它们存在于云中&#xff0c;并且能够对变化保持韧性。系统是由多个服务组成的&#…

Android 下载进度条HorizontalProgressView 基础版

一个最基础的自定义View 水平横向进度条&#xff0c;只有圆角、下载进度控制&#xff1b;可二次定制度高&#xff1b; 核心代码&#xff1a; Overrideprotected void onDraw(NonNull Canvas canvas) {super.onDraw(canvas);int mW getMeasuredWidth();int mH getMeasuredHei…