使用预训练的BERT进行金融领域问答

获取更多完整项目代码数据集,点此加入免费社区群 首页-置顶必看

1. 项目简介

本项目旨在开发并优化一个基于预训练BERT模型的问答系统,专注于金融领域的应用。随着金融市场信息复杂性和规模的增加,传统的信息检索方法难以高效应对用户的精确问答需求。BERT(Bidirectional Encoder Representations from Transformers)模型的出现,通过深度上下文理解,展示了强大的自然语言处理能力。本项目的核心目标是在金融领域建立一个智能问答系统,能够高效、准确地解答用户的具体问题。我们利用FinBERT,一个专门针对金融文本预训练的BERT模型,作为基础,通过在金融领域的特定数据上微调模型,进一步提高其对该领域问答任务的精度和适用性。该项目的应用场景包括金融咨询服务、市场分析报告解读和用户常见问题自动解答等,目标是提升用户体验并降低信息查询时间。在项目中,涵盖数据生成、预处理、模型训练、预测及模型评估的全过程,旨在为金融行业提供高效的智能问答解决方案。

在这里插入图片描述

2.技术创新点摘要

FinBERT的定制化使用:该项目使用了经过特定金融文本领域预训练的FinBERT模型,进一步针对金融领域微调,这使得它能够处理特定领域的复杂问题。相比传统的BERT模型,FinBERT对金融术语、金融报告、市场分析等领域的文本理解更加精准,从而显著提高了问答任务的表现。

LSTM模型的集成:在项目中,除了BERT模型外,还引入了LSTM(长短期记忆网络)来处理特定类型的金融问答任务。通过结合LSTM模型的能力,项目可以有效地处理时间序列数据,帮助解决诸如金融市场中的时间相关性问题,使得系统对用户提问的时间上下文更加敏感。

正负样本对比学习策略:在训练过程中,项目采用了正负样本对比学习策略,即将用户问题与正确答案和错误答案进行对比,通过计算正负样本的相似度,来优化模型的训练。这种方法通过损失函数的引入,有效提高了模型对正解答的敏感性,同时减小对错误解答的误判率。

多模型框架:该项目不仅支持使用FinBERT模型,还集成了多种模型,包括基于BERT的点对点模型、对偶模型等,允许在不同任务下灵活选择最佳模型。通过多模型的融合策略,项目可以根据具体任务需求(如任务级别、领域级别)自动切换最合适的预训练模型,进一步提升系统的问答精度。

自定义数据生成与处理流程:项目中有独立的数据生成和处理模块,能够根据金融领域的特定需求生成多种数据格式,并进行有效的预处理。这包括对数据的清理、标注和特征提取等,使得模型训练数据更具针对性,减少了训练时间并提高了模型的泛化能力。

3. 数据集与预处理

本项目的数据集主要来源于金融领域的公开文本数据集和公司内部的客户问答数据,涵盖金融报告、市场分析、财经新闻等多种类型的文本。这些数据具有以下特点:1. 专业性强,包含大量的金融术语和行业特定表达方式;2. 数据文本长度不一,既有简短的用户问题,也有复杂的市场分析报告;3. 数据具有一定的时效性,涉及随时间变化的金融信息。

在数据预处理方面,首先对数据进行了清洗和筛选。针对文本数据,去除了无关字符、标点符号、特殊符号以及重复数据。接着进行了分词处理,采用BERT分词器将文本切分为子词单元,确保输入模型的数据格式符合BERT的要求。

此外,数据预处理还包括以下几步:

  1. 归一化:为了确保输入数据的稳定性,文本经过了标准化处理,例如统一大小写、处理数字和货币符号等。此过程确保了模型对不同形式的同一表达方式具有一致的理解能力。
  2. 样本构建:项目采用了正负样本对比的学习策略,在训练集中构建了“问题-正解答”和“问题-负解答”样本对,帮助模型更好地学习答案的相关性。正负样本通过特定的相似度计算方式进行构建,负样本一般是与问题无关或无效的答案。
  3. 特征工程:为了进一步增强模型的表现,项目在文本输入模型之前进行了一些特征工程处理。首先,提取了关键信息片段,识别出金融术语、数值信息等重要特征,确保模型能够理解这些关键信息。此外,项目还通过对句子结构的分析,捕捉文本中的上下文依赖性,使得模型对问答的语义理解更加准确。

4. 模型架构

1) 模型结构逻辑

该项目采用了基于预训练的BERT模型,并结合LSTM(长短期记忆网络)用于金融领域的问答任务。主要有两个核心模型:

  • FinBERT模型:这是BERT的一个变体,专门针对金融领域的数据进行了预训练,能够更好地理解金融文本中的专业术语和上下文。该模型利用了BERT的双向编码器架构,通过深度上下文来理解用户的问题并生成答案。
  • LSTM模型:项目中还集成了一个LSTM模型,用于处理某些时间序列相关的任务,尤其是在问答中存在时间依赖性的场景。LSTM通过记住和遗忘机制,能够处理带有序列依赖关系的问答任务。

在这两个模型的基础上,项目提供了点对点(pointwise)和对偶(pairwise)模型结构,这些结构用于不同的问答场景,以优化模型在不同金融任务中的表现。

2) 模型训练流程

模型的训练流程主要包括以下步骤:

  1. 数据加载与预处理:使用自定义的数据加载模块,系统会先处理数据集,生成“问题-正解答”和“问题-负解答”样本对。在此过程中,文本会经过分词、标准化等预处理操作,确保输入模型的格式正确。
  2. 训练阶段:训练时,模型将问题和对应的正负答案分别输入,通过计算正解答和负解答的相似度,使用hinge loss作为损失函数,优化模型的问答能力。每个训练批次中,模型首先计算正负答案的相似度,然后反向传播计算损失,更新模型的参数。
  3. 验证与评估:在训练完成后,模型会通过验证集进行评估,计算平均损失值(如MSE、cross-entropy等指标),并根据验证集的表现调整超参数。项目中还使用了折扣累积增益(DCG)来评估模型对候选答案的排序质量,确保模型在回答问题时能够优先输出更相关的答案。

评估指标

模型的评估主要使用以下几个指标:

  • DCG (Discounted Cumulative Gain) :用于评估模型在问答任务中对候选答案的相关性排序,越相关的答案排名越靠前时,DCG得分越高。
  • 平均损失值:衡量模型的误差,通过训练和验证集的损失值评估模型的整体性能。
  • 正确率:验证模型在问答任务中生成的答案是否准确。

5. 核心代码详细讲解

1) 数据预处理和特征工程

文件:process_data.py

def pre_process(text):"""Returns a lower-cased string with punctuations and special characters removed."""text = str(text)# Substitute punctuations and special characters for a spacex = re.sub('[…“”%!&"@#()\-\*\+,/:;<=>?@[\]\^_`{\}~]', ' ', text)# Remove periodsy = re.sub('[\.\']', "", x)# Apply lower-caseprocessed_text = y.lower()
return processed_text

解释

  1. pre_process 函数对文本进行清理,将所有标点符号替换为空格,并将文本转为小写。
  2. 通过正则表达式删除标点符号和特殊字符,确保模型输入干净的文本格式,有助于模型更好地理解金融领域的问答内容。
def process_questions(queries):"""Returns a dataframe with tokenized questions."""queries['q_processed'] = queries['question'].apply(pre_process)queries['tokenized_q'] = queries.apply(lambda row: wordpunct_tokenize(row['q_processed']), axis=1)queries['q_len'] = queries.apply(lambda row: len(row['tokenized_q']), axis=1)
return queries

解释

  1. process_questions 函数首先对问题文本进行预处理,清理无用字符。
  2. 然后使用 wordpunct_tokenize 进行分词,将问题文本转化为单词列表,并统计每个问题的长度。这些特征是模型的重要输入。
def process_answers(collection):"""Returns a dataframe with tokenized answers."""collection['doc_processed'] = collection['doc'].apply(pre_process)collection['tokenized_ans'] = collection.apply(lambda row: wordpunct_tokenize(row['doc_processed']), axis=1)collection['ans_len'] = collection.apply(lambda row: len(row['tokenized_ans']), axis=1)
return collection

解释

  1. process_answers 类似于问题的处理方式,先对答案进行文本清理,然后分词,并计算每个答案的长度。这为后续训练提供干净、结构化的数据。

2) 模型架构构建

文件:finbert_qa.py

class BERT_MODEL():"""Fine-tuned BERT model for non-factoid question answering."""def init(self, bert_model_name):"""Initialize which pre-trained BERT model to use."""self.bert_model_name = bert_model_name
def get_model(self):"""Initialize which pre-trained BERT model to use.BertForSequenceClassification is a model from Huggingface's transformer library that contains the pretrained BERT model with a single linear classification layer."""if self.bert_model_name == "bert-base":model_path = "bert-base-uncased"elif self.bert_model_name == "finbert-domain":get_model("finbert-domain")model_path = str(Path.cwd()/'model/finbert-domain')elif self.bert_model_name == "finbert-task":get_model("finbert-task")model_path = str(Path.cwd()/'model/finbert-task')model = BertForSequenceClassification.from_pretrained(model_path)return model

解释

  1. BERT_MODEL 类负责初始化和加载BERT模型,用于问答任务。
  2. get_model 方法从 Huggingface 的 transformers 库中加载预训练的 BERT 模型。针对不同任务,有多个模型可供选择(如 bert-basefinbert-domain),并根据领域需求微调。

3) 模型训练和评估

文件:train_models.py

def train(self, model, train_dataloader, optimizer):"""Trains the model and returns the average loss"""train_loss = 0.0model.train()
for step, batch in enumerate(tqdm(train_dataloader)):question = batch[0].to(self.device)pos_ans = batch[1].to(self.device)neg_ans = batch[2].to(self.device)model.zero_grad()pos_sim = model(question, pos_ans)neg_sim = model(question, neg_ans)loss = self.hinge_loss(pos_sim, neg_sim).mean()loss.backward()optimizer.step()train_loss += loss.item()avg_loss = train_loss / len(train_dataloader)return avg_loss

解释

  1. train 方法用于模型的训练过程。
  2. 每个训练步骤中,模型接收问题和正负答案对的输入,计算相似度,并通过 hinge_loss 来优化模型,使其能够更好地区分正负答案。
  3. 使用反向传播计算梯度,并通过优化器更新模型参数。

评估指标:

文件:evaluate.py

def dcg(rels, k):"""Discounted Cumulative Gain. Computes the cumulated DCG of the top-k relevant docs across all queries."""cumulated_sum = rels[0]for i in range(1, k):cumulated_sum += rels[i] / math.log(i+1, 2)return cumulated_sum

解释

  1. dcg 函数计算折扣累积增益(DCG),用于评估模型在问答任务中的表现,特别是在排序问题中,越相关的答案排名靠前,得分越高。

6. 模型优缺点评价

模型优点:

  1. 领域特化模型:项目采用了FinBERT模型,这是BERT的金融领域特化版本,能够很好地处理金融术语和复杂的文本。相较于通用BERT模型,FinBERT在处理金融领域的问答任务时更具优势,尤其在理解专业术语和领域相关的上下文时表现优异。
  2. 多模型集成:项目不仅结合了BERT模型,还集成了LSTM模型,用于处理时间序列任务,这种多模型融合策略使系统更灵活,可以根据不同任务选择最佳模型。
  3. 正负样本对比学习:通过引入正负样本对比的训练方式,模型能更好地理解答案的相关性,减少误判,显著提高了问答的准确性。
  4. 丰富的数据预处理和特征工程:模型对数据进行了详细的清理和处理,如分词、归一化等,为模型提供了高质量的输入数据,增强了模型的鲁棒性和泛化能力。

模型缺点:

  1. 模型复杂度高:由于引入了多个模型和复杂的对比学习训练方式,计算开销较大,训练时间较长,尤其是在大规模数据集上的表现可能受限。
  2. 对长文本表现不佳:尽管BERT对长文本有一定的处理能力,但其有限的输入长度在处理较长的金融报告或文档时,可能丢失部分关键信息,影响模型的表现。
  3. 缺少数据增强:项目没有提到有效的文本数据增强方法,缺少例如同义词替换、数据扰动等增强技术,可能会限制模型在应对数据多样性时的表现。

可能的模型改进方向:

  1. 模型结构优化:可以考虑引入更多的层次化模型结构,如结合Transformer中的最新模型(如DeBERTa或T5),进一步提高模型的精度和上下文理解能力。
  2. 超参数调整:通过网格搜索或贝叶斯优化等方法,对模型的学习率、批次大小、优化器等超参数进行更细致的调整,以优化模型的训练效果。
  3. 数据增强:在数据预处理中增加数据增强技术,如同义词替换、随机删除或插入词语,以增加训练数据的多样性,提升模型的泛化能力。

↓↓↓更多热门推荐:
ResNet18果蔬图像识别分类

全部项目数据集、代码、教程进入官网zzgcz.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/56540.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python 爬虫项目实战:爬取某云热歌榜歌曲

一、网络爬虫的定义 网络爬虫&#xff08;Web Crawler&#xff09;&#xff0c;也成为网页蜘蛛或者网页机器人&#xff0c;是一种按照既定规则自动浏览网络并提取信息的程序。爬虫的主要用途包括数据采集、网络索以及内容抓取等。 二、爬虫基本原理 1、种子URL&#xff1a;爬…

01 springboot-整合日志(logback-config.xml)

logback-config.xml 是一个用于配置 Logback 日志框架的 XML 文件&#xff0c;通常位于项目的 classpath 下的根目录或者 src/main/resources 目录下。 Logback 提供了丰富的配置选项&#xff0c;可以满足各种不同的日志需求。需要根据具体情况进行配置。 项目创建&#xff0…

CCF-BDCI大数据与计算智能大赛TOP4-京东生鲜

2023 CCF 大数据与计算智能大赛《线上线下全场景生鲜超市库存履约一体化决策》top4南山论剑 摘要1 数据预处理1.1 数据整合1.2 数据划分 2 特征工程2.1 静态特征2.2 动态特征 3 方案设计3.1 数据构造3.2 模型训练3.3 模型融合3.4库存分配3.5 方案对比 链接: CCFBDCI-线上线下全…

解决:如何在opencv中得到与matlab立体标定一样的矫正图?(python版opencv)

目的&#xff1a;采用一样的标定参数&#xff0c;matlab中和opencv中的立体矫正图像是一样的吗&#xff1f;不一样的话怎么让它们一样&#xff1f; 结论&#xff1a;不一样。后文为解决方案。 原因&#xff1a;注意matlab的标定结果在matlab中的用法和在opencv中的用法不一样&a…

STM32 从0开始系统学习2

目录 C语言基础 位操作 extern 修饰符 typedef 封装复杂的类型 寄存器基础知识 STM32F103架构简单描述&#xff08;建议先不看&#xff09; 存储器映射 寄存器映射 寄存器地址计算 下面简单的聊一聊一些需要的前置知识基础。 C语言基础 位操作 这个在单片机里算基操…

Windows通过netsh控制安全中心防火墙和网络保护策略

Windows通过netsh控制安全中心防火墙和网络保护策略 1. 工具简介 【1】. Windows安全中心 【2】. netsh工具 netsh(Network Shell) 是一个Windows系统本身提供的功能强大的网络配置命令行工具。 2. 开启/关闭防火墙策略 在设置端口&#xff08;禁用/启用&#xff09;前&am…

中国人寿财险青岛市分公司普惠金融助力民生保障

普惠金融是金融业的重要组成部分&#xff0c;也是服务实体经济、保障民生的重要途径。国寿财险青岛市分公司始终坚持以人民为中心的发展思想&#xff0c;大力发展普惠金融业务&#xff0c;不断提升金融服务的覆盖面和便捷性。 在服务“三农”方面&#xff0c;国寿财险青岛市分…

【宝塔面板】宝塔面板使用docker部署chatGPT-Next-web

1111111 chatGPT-Next-web大家并不陌生&#xff0c;就是下面的这个界面&#xff0c;下面请大家跟随小编部署下这个web 我们先感谢下源码的博主&#xff1a; https://github.com/Dooy/chatgpt-web-midjourney-proxy 本教程部署也很简单&#xff0c;就2步 1、创建容器编排模版 …

云原生后端概述

目录 云原生后端概述 云原生后端的核心特点 云原生后端的架构组件 云原生后端的常见技术栈 云原生后端与传统后端架构的对比 结论 云原生后端概述 随着企业对数字化转型需求的不断增加&#xff0c;云原生后端逐渐成为构建现代应用程序的核心方法。云原生&#xff08;Clo…

股票基金大通证券申购大宗交易代理-VUE源码开源版

前后端vue开源 服务端java开源 这套是开源的 1.环境 环境 php7.4 sql 5.7 Nginx1.2 tomcat-8 redis 放行1-65535 2.创建5个网站。xxx.com替换你的域名 ftp.xxx.com api.xxx.com agent.xxx.com admin.xxx.com wap.xxx.com api设置反向代理 代理名称 api 目标URL http://127.…

Spring boot快速集成开发

目录 1. 创建 Spring Boot 项目 2. 项目结构 3. 编写代码 3.1 创建实体类 3.2 创建数据访问层 3.3 创建服务层 3.4 创建控制器 4. 配置数据库 5. 启动应用 6. 运行项目 7. 测试 API 8. H2 控制台 在 Spring Boot 中快速集成开发的步骤通常包括创建项目、添加依赖、编写…

Qt 学习第 天:线程与多线程

1024程序员快乐&#xff0c;如果这博客让你学习到了知识&#xff0c;请给我一个免费的赞❤️ 一、创建界面文件 LCDnumber 二、创建mythread类&#xff0c;继承QObject 三、在MyThread.h文件做修改&#xff0c;并且加上函数声明 引入头文件&#xff0c;改变继承 #ifndef MY…

迁移学习|ResNet18

一、导入库 二、设置随机种子 三、数据增强和数据加载 四、加载预训练模型 五、定义损失函数和优化器 六、学习率调度器 七、训练模型 八、可视化训练过程 九、总结 1. 常见优化器概述 1.1 随机梯度下降&#xff08;SGD: Stochastic Gradient Descent&#xff09; 简介&…

C++图形库

建议大家多逛逛GitHub&#xff0c;特别是DevWeekly&#xff0c;它每周都会筛选一些优秀的开源项目、开源工具、技术文章等&#xff0c;可以多去看看。接下来不废话了&#xff0c;列举一些我认为较好的C图形库&#xff0c;希望对大家学习有帮助。 NanoVG NanoVG是一个2D图形库…

使用yield压平嵌套字典有多简单?

我们经常遇到各种字典套字典的数据&#xff0c;例如&#xff1a; nest_dict {a: 1,b: {c: 2,d: 3,e: {f: 4}},g: {h: 5},i: 6,j: {k: {l: {m: 8}}} } 有没有什么简单的办法&#xff0c;把它压扁&#xff0c;变成&#xff1a; {a: 1,b_c: 2,b_d: 3,b_e_f: 4,g_h: 5,i: 6,j_k_l_…

【Linux系统内核探索】进程调度

文章目录 进程调度什么是进程调度&#xff1f;进程调度算法task_struct的链式结构 总结 进程调度 什么是进程调度&#xff1f; 进程调度是操作系统内核的核心功能之一&#xff0c;负责在多个进程之间分配CPU时间&#xff0c;使得系统能够同时运行多个进程。因为计算机的CPU资…

MongoDB的基本操作

&#x1f337;数据库准备 &#x1f388;Mongoshell 1.在指定目录下创建mongodb文件夹、其子文件log和data以及mongodb.log cd /home/ubuntu mkdir -p mongodb/data mkdir -p mongodb/log touch mongodb/log/mongodb.log 执行mongodb命令启动mongdb服务 mongod --dbpath /h…

SwiftUI:单个App支持设置多语言

SwiftUI 全新多语言方案 简化本地化的字符串- WWDC21 - 视频 本地化您的SwiftUI app - WWDC21 - 视频 构建全球化App&#xff1a;本地化的示例- WWDC22 - 视频 构建支持多语言的App - WWDC24 - 视频 单个App支持设置多语言 工程 Info.plist里添加 键值UIPrefersShowingLangua…

DDD重构-实体与限界上下文重构

DDD重构-实体与限界上下文重构 概述 DDD 方法需要不同类型的类元素&#xff0c;例如实体或值对象&#xff0c;并且几乎所有这些类元素都可以看作是常规的 Java 类。它们的总体结构是 Name: 类的唯一名称 Properties&#xff1a;属性 Methods: 控制变量的变化和添加行为 一…

大数据Azkaban(二):Azkaban简单介绍

文章目录 Azkaban简单介绍 一、Azkaban特点 二、Azkaban组成结构 三、Azkaban部署模式 1、solo-server ode&#xff08;独立服务器模式&#xff09; 2、two server mode&#xff08;双服务器模式&#xff09; 3、distributed multiple-executor mode&#xff08;分布式多…