《OpenCV计算机视觉》—— 年龄与性别预测

结合以下链接中的文章有助于理解此篇案例:

  • OpenCV中的 cnn 模块
    • https://blog.csdn.net/weixin_73504499/article/details/142965441?spm=1001.2014.3001.5501

此案例是通过使用OpenCV中的cnn模块来调用别人已经训练好的深度学习模型,此篇案例中用到了人脸检测模型年龄预测模型性别预测模型

  • 以下链接中是这三种模型所需要的模型文件和配置文件

    • 链接: https://pan.baidu.com/s/1hzatG5CNVVULCA8TjEegag?pwd=iaeg
    • 提取码: iaeg
  • 完整代码如下:

    import cv2
    from PIL import Image, ImageDraw, ImageFont
    import numpy as np# ======模型初始化======
    # 模型(网络模型/预训练模型):face/age/gender(脸、年龄、性别)
    faceProto = "model/opencv_face_detector.pbtxt"
    faceModel = "model/opencv_face_detector_uint8.pb"
    ageProto = "model/deploy_age.prototxt"
    ageModel = "model/age_net.caffemodel"
    genderProto = "model/deploy_gender.prototxt"
    genderModel = "model/gender_net.caffemodel"# 加载网络
    ageNet = cv2.dnn.readNet(ageModel, ageProto)  # 模型的权重参数、模型的配置
    genderNet = cv2.dnn.readNet(genderModel, genderProto)
    faceNet = cv2.dnn.readNet(faceModel, faceProto)
    # ======年龄初始化======
    # 年龄段和性别  共有8个年龄区间,区间范围可自行更改
    ageList = ['0-2岁', '4-6岁', '8-12岁', '15-22岁', '25-32岁', '38-43岁', '48-53岁', '60-100岁']
    genderList = ['男性', '女性']
    mean = (78.4263377603, 87.7689143744, 114.895847746)  # 模型均值# ======自定义函数,获取人脸包围框======
    def getBoxes(net, frame):frameHeight, frameWidth = frame.shape[:2]  # 获取高度、宽度# 实现图像预处理,从原始图像构建一个符合人工神经网络输入格式的四维块。blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), [104, 117, 123], True, False)net.setInput(blob)  # 调用网络模型,输入图片进行人脸检测detections = net.forward()faceBoxes = []  # 存储检测到的人脸xx = detections.shape[2]for i in range(detections.shape[2]):# confidence中每一行保存了7个数据,第3个数据表示置信度,第4,5,6,7分别表示人脸归一化后的坐标位置confidence = detections[0, 0, i, 2]if confidence > 0.7:  # 筛选一下,将置信度大于0.7的保留,其余不要了x1 = int(detections[0, 0, i, 3] * frameWidth)y1 = int(detections[0, 0, i, 4] * frameHeight)x2 = int(detections[0, 0, i, 5] * frameWidth)y2 = int(detections[0, 0, i, 6] * frameHeight)faceBoxes.append([x1, y1, x2, y2])  # 人脸框坐标# 绘制人脸框cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight / 150)), 6)# 返回绘制了人脸框的帧frame、人脸包围框faceBoxesreturn frame, faceBoxes""" 向图片中添加中文 """
    def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=30):if (isinstance(img, np.ndarray)):  # 判断是否是OpenCV图片类型img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))  # 实现 array 到 image 的转换draw = ImageDraw.Draw(img)  # 在img图片上创建一个绘图的对象# 字体的格式                       C 盘中的 Windows/Fonts 中,复制到此文件夹下可看到文件名fontStyle = ImageFont.truetype("simsun.ttc", textSize, encoding="utf-8")draw.text(position, text, textColor, font=fontStyle)  # 绘制文本return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)  # 转换回 OpenCV 格式""" 打开摄像头,将每一帧画面传入神经网络中 """
    cap = cv2.VideoCapture(0)	# 0-->电脑自带摄像头,1-->电脑外接摄像头while True:_, frame = cap.read()# frame = cv2.flip(frame,1) # 镜像处理# 获取人脸包围框、绘制人脸包围框(可能多个)frame, faceBoxes = getBoxes(faceNet, frame)if not faceBoxes:print("当前镜头中没有人")continue# 遍历每一个人脸包围框for faceBoxe in faceBoxes:# 处理每一帧画面frame,将其处理为符合DNN输入的格式x, y, x1, y1 = faceBoxeface = frame[y:y1, x:x1]blob = cv2.dnn.blobFromImage(face, 1.0, (227, 227), mean)   # 模型输入为227*277# 调用模型,预测性别genderNet.setInput(blob)genderOuts = genderNet.forward()gender = genderList[genderOuts[0].argmax()]# 调用模型,预测年龄ageNet.setInput(blob)ageOuts = ageNet.forward()age = ageList[ageOuts[0].argmax()]result = "{},{}".format(gender, age)    # 格式化文本(年龄、性别)frame = cv2AddChineseText(frame, result, (x, y - 30))   # 输出中文性别和年龄cv2.imshow("result", frame)if cv2.waitKey(1) == 27:    # 按下ESc键,退出程序breakcv2.destroyAllWindows()
    cap.release()
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/56018.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3.Java入门笔记--基础语法

1.字面量 概念:计算机用来处理数据的,字面量就是告诉程序员数据在程序中的书写格式 常用数据:整数,小数直接写;字符单引号(A)且只能放一个字符;字符串双引号("Hel…

ROUGE:摘要自动评估软件包

算法解析 ROUGE(Recall-Oriented Understudy for Gisting Evaluation)是一组用于自动评估文本摘要质量的指标,主要通过比较机器生成的摘要与一个或多个参考摘要之间的重合程度来衡量。ROUGE 包括多个变体,其中最常用的有 ROUGE-N…

深度解析模型调优与正则化:L1、L2正则化及偏差-方差的权衡

🎯 深度解析模型调优与正则化:L1、L2正则化及偏差-方差的权衡 📖 目录 🌟 模型调优的本质:偏差与方差的权衡🔎 正则化的概念与作用🛠 L1正则化(Lasso回归)详解与实现⚙…

C++研发笔记5——C语言程序设计初阶学习笔记3

我们继续第二部分《初识C语言》的学习,上一篇笔记当中我们详细讲解了什么是C语言以及第一个C语言程序。本篇笔记中我们继续从数据类型开始学习,后面的内容还包括:数据类型 、变量与常量 、字符串转义字符注释 、选择语句 、循环语句 、函数 、…

linux 修改主机名和用户名颜色

编译 ~/.bashrc vim ~/.bashrc 如下格式 PS1\[\e[1;31m\]\h:\[\e[0;32m\]\w \[\e[1;34m\]\u\[\e[0m\]\$ PS1${debian_chroot:($debian_chroot)}\[\033[01;31m\]\u\[\033[01;33m\]\[\033[01;36m\]\h \[\033[01;33m\]\w \[\033[01;35m\]\$ \[\033[00m\] if [ -e /lib/terminfo…

QT中中文显示乱码问题

在VS2013中用QT开发GUI应用程序&#xff0c;Qt中显示中文乱码 一&#xff1a; //解决QT中中文显示乱码问题 #pragma execution_character_set("utf-8") 二&#xff1a;在main函数中添加以下代码&#xff1a; #include <QTextCodec>void main() {QTextCod…

MySQL中的增查操作:探索数据的奥秘,开启数据之门

本节&#xff0c;我们继续深入了解MySQL&#xff0c;本章所讲的基础操作&#xff0c;针对的是表的增删查改&#xff01; 一、Create 新增 1.1、语法 INSERT [INTO] table_name[(column [, column] ...)] VALUES(value_list) [, (value_list)] ... value_list: value, [, va…

离线安装bitnami-gitlab8.8.4+汉化

注意&#xff1a; 常规安装gitlab需要联网&#xff0c;而按装bitnami-gitlab无需联网(bitnami-gitlab用于内网环境无法联网时安装gitlab&#xff0c;两者是一个东西只是名字不一样)bitnami-gitlab-8.8.4版本可以汉化成功新用户注册账户无需激活也可以直接登录&#xff0c;因为…

探究互联网数字化商品管理变革:从数据化到精准运营的路径转型

在当前的互联网经济背景下&#xff0c;商品管理已经进入了一个高度数字化的新时代。随着大数据、云计算、人工智能等技术的迅猛发展&#xff0c;传统的商品管理模式正在经历一场深刻的变革。企业不再仅仅依赖信息化系统来进行数据存储和管理&#xff0c;而是通过更加智能、精准…

Ubuntu 上所有正在监听的端口

要查看 Ubuntu 上所有正在监听的端口&#xff0c;可以使用以下命令&#xff1a; 使用 ss 命令 ss 是一个常用的工具&#xff0c;可以查看网络套接字的状态&#xff0c;包括正在监听的端口。 bash 复制 ss -tuln -t&#xff1a;显示 TCP 套接字。 -u&#xff1a;显示 UDP 套接…

200元运动蓝牙耳机有哪些?爆款测评PK力荐!

在运动场景下&#xff0c;传统的入耳式和半入耳式耳机虽然占据了大部分市场&#xff0c;但并不适合所有人&#xff0c;尤其是在长时间运动中佩戴时&#xff0c;耳道的压迫感往往会导致不适。而骨传导耳机虽然通过不塞入耳道的方式改善了佩戴舒适度&#xff0c;但在音质方面与入…

git-合并连续两次提交(一个功能,备注相同)

前言&#xff1a; 场景是这样&#xff0c;由于我是实现一个功能&#xff0c;先进行了一次commit,然后我发现写的有些小问题&#xff0c;优化了一下功能并且把代码优化了一次&#xff0c;于是又提交了一次。两次的提交都是以相同的备注&#xff08;当然这个无所谓&#xff09;&a…

keras的内部的模块有哪些? (自用便签)

AI回答, 什么时候忘了回来看看

OpenCV高级图形用户界面(11)检查是否有键盘事件发生而不阻塞当前线程函数pollKey()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 轮询已按下的键。 函数 pollKey 无等待地轮询键盘事件。它返回已按下的键的代码或如果没有键自上次调用以来被按下则返回 -1。若要等待按键被按…

Transformer 与 CNN的对比

Transformer 相比于 CNN 的优点主要体现在以下几个方面: Transformer 相比 CNN 的优点: 全局依赖建模能力:Transformer 的核心机制是 自注意力机制,它可以直接建模输入序列中任意两个位置之间的依赖关系,无论它们之间的距离有多远。 相比之下,CNN 更擅长处理局部信息,它…

如何在分布式环境中实现高可靠性分布式锁

目录 一、简单了解分布式锁 &#xff08;一&#xff09;分布式锁&#xff1a;应对分布式环境的同步挑战 &#xff08;二&#xff09;分布式锁的实现方式 &#xff08;三&#xff09;分布式锁的使用场景 &#xff08;四&#xff09;分布式锁需满足的特点 二、Redis 实现分…

IP不纯净的后果及解决方案

在如今的互联网时代&#xff0c;知识产权&#xff08;IP&#xff09;保护显得尤为重要。随着社交媒体的迅猛发展&#xff0c;尤其是以TikTok为代表的短视频平台的崛起&#xff0c;内容创作者面临着越来越多的挑战&#xff0c;其中之一便是IP不纯净的问题。本文将探讨做IP不纯净…

12、论文阅读:利用生成对抗网络实现无监督深度图像增强

Towards Unsupervised Deep Image Enhancement With Generative Adversarial Network 摘要介绍相关工作传统图像增强基于学习的图像增强 论文中提出的方法动机和目标网络架构损失函数1) 质量损失2) 保真损失3&#xff09;身份损失4&#xff09;Total Loss 实验数据集实现细节评…

redis 使用

打开redis 前台启动 同路径下打开redis-server 出现窗口&#xff0c;即启动成功 此时关闭窗口&#xff0c;redis关闭&#xff1b; 不管有没有使用密码&#xff0c;或者使用了什么密码&#xff0c;都能连上 如果使用下文提到的redis cli增加密码&#xff0c;就只能使用你设置的…

【机器学习】任务七:聚类算法 (K-means 算法、层次聚类、密度聚类对鸢尾花(Iris)数据进行聚类)

目录 1.基础知识 1.1 K-Means 算法 1.2 层次聚类&#xff08;Hierarchical Clustering&#xff09; 1.3 密度聚类&#xff08;DBSCAN&#xff09; 1.4 距离和相似度度量方法 1.5 总结&#xff1a; 2.K-means 算法对鸢尾花&#xff08;Iris&#xff09;数据进行聚类 2.1…