闪存存储技术
引言
性能由高到低排序:SLC -> MLC -> TLC -> QLC
根据这个排序读写速度也越来越低,价格越来越便宜
1. SLC
SLC(Single-Level Cell,单层单元): SLC 闪存具有最高的性能、耐用性和可靠性。一单位空间(cell)可以存储 1bit 数据,也就是 1bit/cell,单颗粒理论擦写次数在10万次以上,这代表的就是如果你有一块 SLC 颗粒的固态硬盘,那理论上你可以写满这块硬盘10万次,它才会坏,但它的问题就是存储成本高。由于每个存储单元只存储一个位,SLC 闪存的读写速度较快,并且具有更长的寿命。它通常被用于对性能和可靠性要求极高的应用,如企业级存储系统和嵌入式系统。
2. MLC
MLC(Multi-Level Cell,多层单元,也就是双层存储单元): MLC 闪存的性能、耐用性和可靠性略低于 SLC,但比 TLC 和 QLC 更好,它就达到了 2bit/cell。每个存储单元可以存储两个位,使得存储密度较高,但相对 SLC 仍然具有更好的性能和寿命,单颗粒理论擦写次数在3000-5000次左右。MLC 闪存通常用于消费级 SSD 和一般应用。
3. TLC
TLC(Triple-Level Cell,三层单元):TLC 闪存的性能、耐用性和可靠性较低,但存储密度更高。每个存储单元可以存储三个位,这使得成本更低,但也降低了读写速度和寿命,它可达到 3bit/cell,容量是 SLC 的3倍、MLC 的1.5倍,单颗粒理论擦写次数在500-3000次。TLC 闪存通常用于高容量消费级 SSD。
4. QLC
QLC(Quad-Level Cell,四层单元):QLC 闪存的性能、耐用性和可靠性最低。每个存储单元可以存储四个位(即 4bit/cell),使得存储密度达到最高,但读写速度和寿命都相对较低,所以存储成本也就是这些颗粒类型里最低的,而它的单颗粒理论擦写次数可想而知,仅为100-300次左右。QLC 闪存通常用于高容量消费级 SSD 和部分企业级应用,目前绝大部分定位低端的固态硬盘都采用的这个颗粒类型。
这时又有人要问了,QLC 颗粒寿命这么短,是不是不能选啊?
当然不是,但也分情况。
如果你有一块 1TB 的 QLC 颗粒的固态硬盘,标着 150TBW。这代表着你这块固态硬盘可以重复写入 150TB 的数据,如果是正常的使用场景下,当做系统盘基本用个5年左右没什么问题,而且固态硬盘都有写入均衡技术,它会让固态硬盘所有的颗粒的擦写次数都是平均的。那为什么说分情况呢?因为并不是所有固态硬盘都是 1TB 以上这种大容量的,如果你用的是一块 256GB 的固态硬盘,它的寿命会大打折扣,因为容量的减少,重复擦写的次数也会大大增加。还有些 QLC 固态硬盘的寿命确实低到令人发指,比如某数的绿盘,1TB 的版本也才 80TBW。但对于大多这类低端的固态颗粒而言,更大的影响其实是在性能表现上。
闪存制造技术
5. 3D Flash
3D 闪存技术是一种创新的 NAND 闪存制造技术,通过在垂直方向上堆叠多个存储层来增加存储密度。相比传统的平面式(2D)闪存,3D 闪存技术能够提供更高的存储容量、更高的性能和更低的成本。
以下是 3D 闪存技术的一些关键特点和工作原理:
-
垂直层叠结构:传统的 2D 闪存是在单个平面上存储数据,而 3D 闪存则在垂直方向上堆叠多个存储层。这些层通过一种特殊的制造工艺进行堆叠,使得存储单元可以更紧密地排列在一起,从而增加了存储密度。
-
透明选通技术:为了实现垂直层叠,3D 闪存技术采用了一种称为透明选通(TCAT)的技术。 透明选通允许电流穿过多个层,同时仍然能够精确地选通所需的存储单元。这种技术使得每个存储层都可以独立地进行读写操作,从而提高了数据访问速度和存储效率。
-
增加存储密度和容量:由于 3D 闪存技术可以在垂直方向上堆叠多个存储层,因此它能够提供更高的存储密度和更大的存储容量。这使得 3D 闪存成为了实现高容量存储解决方案的重要技术,特别适用于数据中心、企业级存储和高性能计算等应用。
-
提高性能和耐用性:与传统的 2D 闪存相比,3D闪存技术还可以提供更高的性能和更长的耐用性。由于存储单元更紧密地排列在一起,读写操作的效率更高,因此数据访问速度更快。此外,由于每个存储层都可以独立进行读写操作,所以即使某些层发生故障,其他层仍然可以正常工作,从而提高了整体系统的可靠性和耐用性。
-
降低成本:尽管 3D 闪存技术的制造成本可能会比 2D 闪存技术略高,但由于其能够提供更高的存储密度和更大的存储容量,因此每位存储的成本通常更低。这使得 3D 闪存成为了实现高性价比存储解决方案的关键技术,特别适用于消费级 SSD 和移动设备等应用。
综上所述,3D 闪存技术是一种具有创新性的 NAND 闪存制造技术,通过在垂直方向上堆叠多个存储层来增加存储密度和容量,并提高了性能、耐用性和成本效益。这使得它成为了实现高容量、高性能和高可靠性存储解决方案的重要技术,并在各种应用场景中得到了广泛的应用。