节点分类、链路预测和社区检测的评价指标

文章目录

  • 前言
  • 一、节点分类的评价指标
    • 1. 混淆矩阵 (Confusion Matrix)
    • 2. 准确率 (Accuracy)
    • 3. 精确率 (Precision)
    • 4. 召回率 (Recall)
    • 5. F1分数 (F1 Score)
    • 6. ROC曲线和AUC值 (Receiver Operating Characteristic and Area Under Curve)
  • 二、链路预测的评价指标
    • 1. **AUC (Area Under Curve)**
    • 2. **Precision@L**
    • 3. **Ranking Score**
  • 三、社区检测的评价指标
    • 1. **模块度 (Modularity)**
    • 2. **标准化互信息 (Normalized Mutual Information, NMI)**
  • 总结


前言

开始跑代码,先搞清楚评价指标,才能修改优化代码。


一、节点分类的评价指标

1. 混淆矩阵 (Confusion Matrix)

  • 含义:混淆矩阵是一个用于评估分类模型性能的表格,它显示了实际类别和算法预测类别之间的关系。

  • 表格

    真实/预测 \ 实际预测正类 (Predicted Positive)预测负类 (Predicted Negative)
    实际正类 (Actual Positive)True Positive (TP)False Negative (FN)
    实际负类 (Actual Negative)False Positive (FP)True Negative (TN)

在这里插入图片描述

2. 准确率 (Accuracy)

  • 计算 Accuracy = T P + T N T P + T N + F P + F N \text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} Accuracy=TP+TN+FP+FNTP+TN
  • 含义:表示整个分类结果中正确分类的比例。

3. 精确率 (Precision)

  • 计算 Precision = T P T P + F P \text{Precision} = \frac{TP}{TP + FP} Precision=TP+FPTP

  • 含义 :表示对于预测为正类别的样本中,实际为正类别的比例。

  • 例如,贷款时我们宁可少借出去钱,也不能把钱借给不还钱的人。

4. 召回率 (Recall)

  • 计算 Recall = T P T P + F N \text{Recall} = \frac{TP}{TP + FN} Recall=TP+FNTP
  • 含义:表示对于实际为正类别的样本中,被正确预测为正类别的比例。
  • 例如,体检时,宁可把健康人列为患病的人,也要尽可能找出患病的人。

提高精确率往往意味着降低召回率,反之亦然。

5. F1分数 (F1 Score)

  • 计算 F1 Score = 2 × Precision × Recall Precision + Recall \text{F1 Score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} F1 Score=2×Precision+RecallPrecision×Recall
  • 含义:是精确率和召回率的调和平均值,用于衡量算法的综合性能。

上述指标都是越大越好(一般)

6. ROC曲线和AUC值 (Receiver Operating Characteristic and Area Under Curve)

  • 含义
    • ROC曲线是一个用来展示分类模型在所有可能的分类阈值下的性能图。
    • 它通过绘制真正率(召回率)和假正率来展示模型的性能。
  • 计算
    • 真正率(True Positive Rate, TPR):也称为召回率或灵敏度,是模型正确预测为正类(第一类)的样本占所有实际正类样本的比例。计算公式为 TPR = T P T P + F N \text{TPR} = \frac{TP}{TP + FN} TPR=TP+FNTP
    • 假正率(False Positive Rate, FPR):是模型错误预测为正类的样本占所有实际负类(第二类)样本的比例。计算公式为 FPR = F P F P + T N \text{FPR} = \frac{FP}{FP + TN} FPR=FP+TNFP
  • 绘制方法
    • 横轴是假正率(FPR),纵轴是真正率(TPR)。
    • 不同的点代表不同的分类阈值,模型的分类阈值改变时,会在ROC曲线上移动。
    • 曲线下面积(AUC)越大,模型的性能越好。
  • AUC值
    • AUC值是ROC曲线下的面积,用来量化整个ROC曲线的总体性能。
    • AUC值的范围从0到1,AUC值越接近1,说明模型的分类性能越好;AUC值越接近0.5,说明模型的分类性能接近随机猜测。
  • 计算
    • AUC值可以通过计算ROC曲线下的梯形面积获得。
    • 在实际应用中,通常使用数值积分方法或梯形法则来近似计算AUC值。

AUC面积计算方式不好算,可以用下面的计算公式:
在这里插入图片描述

解释:

  • 分母:正样本 (值为1)的有4个,负样本(值为0)的有6个。故4*6共24种组合。
  • 分子:正样本的预测值>负样本预测值,记为1。正样本的预测值=负样本预测值,记为0.5。故第一个正样本分别与负样本比较得4.5, 第二个正样本得6,以此类推为2,6,相加即为4.5+6+2+6

如果解释看不明白,指路B站视频

样本不平衡时,得到的准确率、精确率、召回率结果含有很大的水分。
故如果样本不平衡,使用F1或ROC曲线。

二、链路预测的评价指标

1. AUC (Area Under Curve)

  • 计算:AUC通过比较测试集中存在的边和不存在的边的相似值来评估算法的性能。具体来说,是绘制ROC曲线(真正率对假正率的图)并计算曲线下的面积。
  • 含义:AUC值衡量算法区分实际边和非边对的能力。AUC值越高,模型的预测能力越好。

2. Precision@L

  • 计算:Precision@L是仅考虑排名前L的预测链接的精确率。计算公式为 Precision@L = 排名前L的预测链接中正确的数量 L \text{Precision@L} = \frac{\text{排名前L的预测链接中正确的数量}}{L} Precision@L=L排名前L的预测链接中正确的数量
  • 含义:衡量模型在给定的前L个预测中预测正确的比例。这个指标有助于了解模型在最有可能的预测中的表现。

3. Ranking Score

  • 计算:Ranking Score基于节点对的排名来评价预测性能。具体来说,是计算测试集中的边和不存在的边的相似值的排名,并根据排名顺序给出分数。
  • 含义:衡量算法预测的边的排名质量。一个高的Ranking Score意味着好的预测性能,即正确的链接更有可能被排在前面。

三、社区检测的评价指标

1. 模块度 (Modularity)

  • 计算:模块度是通过以下公式计算的 Modularity = 1 2 m ∑ i , j [ A i j − d i d j 2 m ] δ ( C i , C j ) \text{Modularity} = \frac{1}{2m} \sum_{i,j} \left[ A_{ij} - \frac{d_i d_j}{2m} \right] \delta(C_i, C_j) Modularity=2m1i,j[Aij2mdidj]δ(Ci,Cj),其中 A i j A_{ij} Aij 是邻接矩阵中的元素, d i d_i di d j d_j dj 是节点的度, δ ( C i , C j ) \delta(C_i, C_j) δ(Ci,Cj) 是一个指示函数,如果节点i和j在同一社区则为1,否则为0。
  • 含义:模块度衡量网络被划分的社区结构的紧密程度。值越高,表示社区内部连接越紧密,社区间的连接越稀疏,因此社区划分质量越好。

2. 标准化互信息 (Normalized Mutual Information, NMI)

  • 计算:NMI是通过以下公式计算的 NMI ( R , F ) = 2 × ∑ i , j N i j log ⁡ ( N i j N i ∗ N j ∗ ) ∑ i N i ∗ log ⁡ ( N i ∗ S ) + ∑ j N j ∗ log ⁡ ( N j ∗ S ) \text{NMI}(R,F) = \frac{2 \times \sum_{i,j} N_{ij} \log \left(\frac{N_{ij}}{N_i^* N_j^*}\right)}{\sum_i N_i^* \log \left(\frac{N_i^*}{S}\right) + \sum_j N_j^* \log \left(\frac{N_j^*}{S}\right)} NMI(R,F)=iNilog(SNi)+jNjlog(SNj)2×i,jNijlog(NiNjNij),其中 N i j N_{ij} Nij 是真实社区i和算法得到的社区j之间共有的节点数, N i ∗ N_i^* Ni N j ∗ N_j^* Nj 分别是真实社区i和算法得到的社区j中的节点总数,S是网络中的总节点数。
  • 含义:NMI衡量算法得到的社区划分与真实社区划分之间的相似度。值越高,表示算法得到的社区划分与真实社区划分越相似。

总结

节点分类的评价指标已全部学习吸收,剩余两个部分仍然待学习····

评价指标的选择和理解对于优化机器学习模型至关重要。通过深入分析这些指标,我们能够更清晰地了解模型的性能,并据此进行相应的调整和优化。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/54156.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++入门基础 (超详解)

文章目录 前言1. C关键字2. C的第一个程序3. 命名空间3.1 namespace的定义3.2 命名空间的嵌套3.3 命名空间使用3.4 查找优先级总结 4. C输入和输出4.1 标准输入输出 (iostream库)4.2 文件输入输出 (fstream库)4.3 字符串流 (sstream库)4.4 C格式化输出4.5 std::endl和\n的区别 …

WMware安装WMware Tools(Linux~Ubuntu)

1、这里终端里面输入sudo apt upgrade用于更新最新的包 sudo apt upgrade 2、安装 open-vm-tools-desktop 包, Ps:这里是以为我已经安装好了。 udo apt install open-vm-tools-desktop -y3、最后重启就大功告成了 reboot 4、测试是否成功&#xff1a…

2024网安周 | 百度安全深度参与,探索人工智能与数字安全的融合发展之路

9月9日-15日,2024年国家网络安全宣传周在全国范围内统一举行,本届网安周继续以“网络安全为人民,网络安全靠人民”为主题,由中央宣传部、中央网信办、教育部、工业和信息化部、公安部、中国人民银行、国家广播电视总局、全国总工会…

0108 Spring Boot启动过程

Spring Boot 的启动过程可以分为以下几个关键步骤: 1. SpringApplication 初始化 Spring Boot 应用的启动是通过调用 SpringApplication.run() 方法完成的。在这个过程中,Spring Boot 会通过 SpringApplication 类对应用进行初始化,包括设置…

0708-指针和字符数组(上)(下)

一、计算字符串的大小: int main() {char C[20];C[0] J;C[1] O;C[2] H;C[3] N;C[4] \0;int len strlen(C);printf("Length %d\n", len); } 二、打印一个"Hello"字符串: 这部分可以看视频, char C[20] "H…

LabVIEW回转支承间隙自动化检测系统

开发了一种基于LabVIEW软件的回转支承间隙检测系统,通过高精度传感器和数据采集卡,自动化、高效地测量回转支承的轴向间隙和径向间隙,提高了检测精度和生产质量。以下是对系统的详细描述与应用案例分析,希望能为有类似需求的开发者…

【深度学习】—线性回归 线性回归的基本元素 线性模型 损失函数 解析解 随机梯度下降

【深度学习】— 线性回归 线性回归的基本元素 线性模型 损失函数 解析解 随机梯度下降 线性回归线性回归的基本元素 线性模型损失函数解析解随机梯度下降小批量随机梯度下降梯度下降算法的详细步骤解释公式 线性回归 回归(regression)是能为⼀个或多个⾃…

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-01

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-01 目录 文章目录 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-01目录1. Beyond Text-to-Text: An Overview of Multimodal and Generative Artificial Intelligence for Education Using Topi…

QT-MySQL QSqlDatabase: QMYSQL driver not loaded

文章目录 问题解决操作:自己尝试编译,各种错误层出不穷: 解决问题检查总结: 问题 使用Qt连接mysql数据库,遇到了一个问题,就是QT5.14.1版本在连接MySQL数据库时候,提示驱动加载失败&#xff0c…

麒麟操作系统部分目录介绍

图形系统目录 文字系统目录 (1)/bin:存放普通用户可以使用的命令文件。 (2)/boot:包含内核和其它系统程序启动时使用的文件。 (3)/dev:设备文件所在目录。在操作系统中…

数据结构 ——— 单链表oj题:返回链表的中间节点

目录 题目要求 手搓简易单链表 代码实现 题目要求 给你单链表的头节点 head ,请你找出并返回链表的中间节点 如果有两个中间节点,则返回第二个中间节点 要求算法的时间复杂度为:O(N) 手搓简易单链表 代码演示: // 单链表中…

Java Web应用升级故障案例解析

在一次Java Web应用程序的优化升级过程中,从Tomcat 7.0.109版本升级至8.5.93版本后,尽管在预发布环境中验证无误,但在灰度环境中却发现了一个令人困惑的问题:新日志记录神秘“失踪”。本文深入探讨了这一问题的排查与解决过程&…

【湖南步联科技身份证】 身份证读取与酒店收银系统源码整合———未来之窗行业应用跨平台架构

一、html5 <!DOCTYPE html> <html><head><meta http-equiv"Content-Type" content"text/html; charsetutf-8" /><script type"text/javascript" src"http://51.onelink.ynwlzc.net/o2o/tpl/Merchant/static/js…

onload_tcpdump命令抓包报错Onload stack [7,] already has tcpdump process

最近碰到Onload 不支持同时运行多个 tcpdump 进程的报错&#xff0c;实际上使用了ps查询当时系统中并没有tcpdump相关进程存在。需要重启服务器本机使用onload加速的相关进程后才能使用onload_tcpdump正常抓包&#xff0c;很奇怪&#xff0c;之前确实没遇到这样的问题&#xff…

Golang | Leetcode Golang题解之第450题删除二叉搜索树的节点

题目&#xff1a; 题解&#xff1a; func deleteNode(root *TreeNode, key int) *TreeNode {var cur, curParent *TreeNode root, nilfor cur ! nil && cur.Val ! key {curParent curif cur.Val > key {cur cur.Left} else {cur cur.Right}}if cur nil {retur…

金镐开源组织成立,增加最新KIT技术,望能为开源添一把火

国内做开源的很多&#xff0c;知名的若依、芋道源码、Pig、Guns等&#xff0c;可谓是百花齐放&#xff0c;虽然比不上Apache&#xff0c;但也大大提高了国内的生产力。经过多年的发展&#xff0c;一些开源项目逐渐也都开始商业化。基于这样的背景&#xff0c;我拉拢了三个技术人…

【重学 MySQL】三十九、Having 的使用

【重学 MySQL】三十九、Having 的使用 基本语法示例示例 1&#xff1a;使用 HAVING 过滤分组示例 2&#xff1a;HAVING 与 WHERE 的结合使用 注意点WHERE 与 HAVING 的对比基本定义与用途主要区别示例对比总结 在 MySQL 中&#xff0c;HAVING 子句主要用于对 GROUP BY 语句产生…

使用powershell的脚本报错:因为在此系统中禁止执行脚本

1.添加powershell功能环境&#xff1a; 2.启动powershell的执行策略 因为在此系统中禁止执行脚本。 set-executionpolicy unrestricted

【计算机视觉】ch1-Introduction

相机模型与成像 1. 世界坐标系 (World Coordinate System) 世界坐标系是指物体在真实世界中的位置和方向的表示方式。在计算机视觉和图像处理领域&#xff0c;世界坐标系通常是一个全局坐标系统&#xff0c;描述了摄像机拍摄到的物体在实际三维空间中的位置。它是所有其他坐标…

刷题day11 栈与队列下【逆波兰表达式求值】【滑动窗口最大值】【前 K 个高频元素】

⚡刷题计划day11 栈与队列继续&#xff0c;可以点个免费的赞哦~ 往期可看专栏&#xff0c;关注不迷路&#xff0c; 您的支持是我的最大动力&#x1f339;~ 目录 ⚡刷题计划day11 栈与队列继续&#xff0c;可以点个免费的赞哦~ 往期可看专栏&#xff0c;关注不迷路&#xf…