Elasticsearch学习笔记(1)

初识 Elasticsearch

认识和安装

Elasticsearch 是由 Elastic 公司开发的一套强大的搜索引擎技术,属于 Elastic 技术栈的一部分。完整的技术栈包括:

  • Elasticsearch:用于数据存储、计算和搜索。
  • Logstash/Beats:用于数据收集。
  • Kibana:用于数据可视化。

这套技术栈通常被称为 elastic stack (ELK),广泛应用于日志收集、系统监控和状态分析等场景。

而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

核心组件

Elasticsearch 是整个技术栈的核心,提供了强大的数据存储、搜索和分析功能。

Kibana 是一个用于操作 Elasticsearch 的可视化控制台,它通过 RESTful API 与 Elasticsearch 进行交互,让用户能够更直观地管理和分析数据。Kibana 的主要功能包括:

  • 数据搜索与展示:支持对 Elasticsearch 数据的灵活搜索和展示。
  • 统计与聚合:能够对数据进行统计分析,并生成图表和报表。
  • 集群状态监控:提供对 Elasticsearch 集群健康状态的监控。
  • 开发控制台(DevTools):提供语法提示,帮助用户更方便地使用 Elasticsearch 的 RESTful API。

安装elasticsearch

通过下面的Docker命令(Windows 命令提示符)即可安装单机版本的elasticsearch:

docker run -d ^--name es ^-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" ^-e "discovery.type=single-node" ^-v es-data:/usr/share/elasticsearch/data ^-v es-plugins:/usr/share/elasticsearch/plugins ^--privileged ^--network hm-net ^-p 9200:9200 ^-p 9300:9300 ^elasticsearch:7.12.1

安装完成后,访问9200端口,即可看到响应的Elasticsearch服务的基本信息:

安装Kibana

通过下面的Docker命令(Windows 命令提示符),即可部署Kibana:

docker run -d ^--name kibana ^-e ELASTICSEARCH_HOSTS=http://es:9200 ^--network=hm-net ^-p 5601:5601 ^kibana:7.12.1

安装完成后,直接访问5601端口,即可看到控制台页面:

选择Explore on my own之后,进入主页面:

然后选中Dev tools,进入开发工具页面:

倒排索引

Elasticsearch 之所以能够提供高性能的搜索功能,主要归功于其底层的倒排索引技术。倒排索引是一种特殊的数据结构,它能够极大地提高文本搜索的效率。

正向索引

在传统的数据库系统中,如 MySQL,通常使用的是正向索引。正向索引是基于记录的 ID 或其他字段创建的索引。例如,给定一个商品表 tb_goods,如果为 id 字段创建索引,那么根据 id 查询时,可以直接通过索引快速定位到记录。

然而,如果需要根据 title 字段进行模糊查询,传统的正向索引就无法高效地处理。在这种情况下,数据库系统通常需要进行全表扫描,逐行检查 title 字段是否包含用户搜索的关键词。这种逐行扫描的方式在大数据量的情况下效率非常低下。

倒排索引

倒排索引是对正向索引的一种特殊处理,它将文档中的每个词条与包含该词条的文档进行关联。倒排索引中有两个核心概念:

  • 文档(Document):用于搜索的数据单元,例如一个网页、一个商品信息等。
  • 词条(Term):对文档数据或用户搜索数据进行分词后得到的具有含义的词语。例如,“我是中国人” 可以被分词为 “我”、“是”、“中国人”、“中国”、“国人” 等词条。

创建倒排索引的流程如下:

  1. 分词:将每个文档的数据进行分词,得到一个个词条。
  2. 创建索引表:创建一个表,每行数据包括词条、词条所在的文档 ID、词条在文档中的位置等信息。
  3. 索引优化:由于词条具有唯一性,可以为词条创建索引,例如使用哈希表结构索引。

倒排索引的搜索流程如下(以搜索 “华为手机” 为例):

  1. 分词:用户输入 “华为手机”,对其进行分词,得到词条 “华为” 和 “手机”。
  2. 查找词条:拿着词条在倒排索引中查找,得到包含这些词条的文档 ID。
  3. 获取文档:根据文档 ID 在正向索引中查找具体的文档。

通过倒排索引,搜索过程可以避免全表扫描,因为词条和文档 ID 都建立了索引,查询速度非常快。

正向索引与倒排索引的对比

正向索引:

优点:

  • 可以为多个字段创建索引。
  • 根据索引字段进行搜索和排序时速度非常快。

缺点:

  • 根据非索引字段或索引字段中的部分词条查找时,只能进行全表扫描。

倒排索引:

优点:

  • 根据词条进行搜索和模糊搜索时速度非常快。

缺点:

  • 只能为词条创建索引,而不是字段。
  • 无法根据字段进行排序。

总结来说,正向索引适用于精确查询和排序,而倒排索引则适用于全文搜索和模糊查询。Elasticsearch 通过结合这两种索引技术,提供了高效的全文搜索能力。

基础概念

Elasticsearch 中有许多独特的概念,与传统的关系型数据库(如 MySQL)有所不同,但也有相似之处。理解这些概念对于掌握 Elasticsearch 的使用至关重要。

文档和字段

Elasticsearch 是面向文档(Document)存储的,文档可以是数据库中的一条商品数据、一个订单信息等。文档数据会被序列化为 JSON 格式后存储在 Elasticsearch 中。

每个 JSON 文档中包含多个字段(Field),类似于数据库中的列。字段是文档的基本组成部分,每个字段都有其数据类型和值。

索引和映射

索引(Index)是相同类型的文档的集合。例如:

  • 所有用户文档可以组织在一起,称为用户的索引。
  • 所有商品的文档可以组织在一起,称为商品的索引。
  • 所有订单的文档可以组织在一起,称为订单的索引。

索引类似于数据库中的表。数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(Mapping),是索引中文档的字段约束信息,类似表的结构约束。

MySQL 与 Elasticsearch 的对比

以下是 MySQL 与 Elasticsearch 中一些关键概念的对比:

MySQLElasticsearch说明
TableIndex索引(Index)是文档的集合,类似数据库的表(Table)
RowDocument文档(Document)是一条条的数据,类似数据库中的行(Row),文档都是 JSON 格式
ColumnField字段(Field)是 JSON 文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL 是 Elasticsearch 提供的 JSON 风格的请求语句,用来操作 Elasticsearch,实现 CRUD
是否可以完全替代 MySQL?

虽然 Elasticsearch 在搜索和分析方面表现出色,但它并不能完全替代 MySQL。两者各有擅长之处:

  • MySQL:擅长事务类型操作,可以确保数据的安全和一致性。

  • Elasticsearch:擅长海量数据的搜索、分析、计算。

在企业中,通常会结合使用两者:

  • 对安全性要求较高的写操作,使用 MySQL 实现。

  • 对查询性能要求较高的搜索需求,使用 Elasticsearch 实现。

  • 两者再基于某种方式,实现数据的同步,保证一致性。

IK 分词器

Elasticsearch 的关键在于倒排索引,而倒排索引依赖于对文档内容的分词。分词是将文本数据分解为有意义的词条(Term)的过程。对于中文文本,由于中文没有像英文那样的自然分隔符(如空格),因此需要专门的中文分词算法。IK 分词器(IK Analyzer)就是这样一个高效、精准的中文分词工具。

安装 IK 分词器插件

IK 分词器是一个开源的中文分词插件,适用于 Elasticsearch。安装 IK 分词器可以显著提高中文文本的分词效果。以下是在 Windows 系统上安装 IK 分词器(IK Analyzer)的步骤:

方案一:在线安装

进入 Elasticsearch 容器

运行以下命令进入正在运行的 Elasticsearch 容器:

docker exec -it es /bin/bash

安装 IK 分词器插件:

在容器内部运行以下命令来安装 IK 分词器插件:

bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

请注意,你需要将 7.12.1 替换为你正在使用的 Elasticsearch 版本号。

退出容器

安装完成后,退出容器:

exit

重启 Elasticsearch 容器

安装完成后,你需要重启 Elasticsearch 容器以使插件生效:

docker restart es
方案二:离线安装

下载 IK 分词器插件:

从 GitHub 页面下载 IK 分词器插件的压缩文件。

将插件文件上传到容器:

将下载的压缩文件上传到 Elasticsearch 容器的 /usr/share/elasticsearch/plugins 目录下。你可以使用 docker cp 命令来完成这个操作:

docker cp /path/to/elasticsearch-analysis-ik-7.12.1.zip es:/usr/share/elasticsearch/plugins/

进入 Elasticsearch 容器

运行以下命令进入正在运行的 Elasticsearch 容器:

docker exec -it es /bin/bash

解压插件文件

在容器内部解压插件文件:

cd /usr/share/elasticsearch/plugins
unzip elasticsearch-analysis-ik-7.12.1.zip
rm elasticsearch-analysis-ik-7.12.1.zip

退出容器

解压完成后,退出容器:

exit

重启 Elasticsearch 容器

安装完成后,你需要重启 Elasticsearch 容器以使插件生效:

docker restart es
IK分词器包含三种模式
  • standard:标准分词器
  • ik_smart:智能语义切分
  • ik_max_word:最细粒度切分

首先,测试 Elasticsearch 官方提供的标准分词器:

POST /_analyze
{"analyzer": "standard","text": "我是中国人"
}

执行结果如下:

{"tokens" : [{"token" : "我","start_offset" : 0,"end_offset" : 1,"type" : "<IDEOGRAPHIC>","position" : 0},{"token" : "是","start_offset" : 1,"end_offset" : 2,"type" : "<IDEOGRAPHIC>","position" : 1},{"token" : "中","start_offset" : 2,"end_offset" : 3,"type" : "<IDEOGRAPHIC>","position" : 2},{"token" : "国","start_offset" : 3,"end_offset" : 4,"type" : "<IDEOGRAPHIC>","position" : 3},{"token" : "人","start_offset" : 4,"end_offset" : 5,"type" : "<IDEOGRAPHIC>","position" : 4}]
}

可以看到,标准分词器只能 1 字 1 词条,无法正确对中文做分词。

接下来,测试 IK 分词器的 ik_smart 模式:

POST /_analyze
{"analyzer": "ik_smart","text": "我是中国人"
}

执行结果如下:

{"tokens" : [{"token" : "我","start_offset" : 0,"end_offset" : 1,"type" : "CN_CHAR","position" : 0},{"token" : "是","start_offset" : 1,"end_offset" : 2,"type" : "CN_CHAR","position" : 1},{"token" : "中国人","start_offset" : 2,"end_offset" : 5,"type" : "CN_WORD","position" : 2}]
}

最后,测试 IK 分词器的 ik_max_word 模式:

POST /_analyze
{"analyzer": "ik_max_word","text": "我是中国人"
}

执行结果如下:

{"tokens" : [{"token" : "我","start_offset" : 0,"end_offset" : 1,"type" : "CN_CHAR","position" : 0},{"token" : "是","start_offset" : 1,"end_offset" : 2,"type" : "CN_CHAR","position" : 1},{"token" : "中国人","start_offset" : 2,"end_offset" : 5,"type" : "CN_WORD","position" : 2},{"token" : "中国","start_offset" : 2,"end_offset" : 4,"type" : "CN_WORD","position" : 3},{"token" : "国人","start_offset" : 3,"end_offset" : 5,"type" : "CN_WORD","position" : 4}]
}

IK 分词器的 ik_smart 模式适用于大多数场景,能够根据上下文进行智能分词;而 ik_max_word 模式则尽可能多地切分出词条,适用于需要更细粒度分词的场景。

拓展词典

进入容器后

cd /usr/share/elasticsearch/config/analysis-ik
ls

查看文件内容:

cat extra_main.dic

总结

分词器的作用是什么?

分词器在搜索引擎中有两个主要作用:

  • 创建倒排索引时,对文档分词:在索引阶段,分词器将文档内容分解成一个个的词条(tokens),并将这些词条与文档关联起来,形成倒排索引。倒排索引是搜索引擎的核心数据结构,用于快速查找包含特定词条的文档。
  • 用户搜索时,对输入的内容分词:在搜索阶段,分词器将用户输入的查询内容分解成一个个的词条,然后搜索引擎根据这些词条在倒排索引中查找匹配的文档。

IK 分词器有几种模式?

IK 分词器提供了两种分词模式:

  • ik_smart:智能切分,粗粒度:ik_smart 模式会进行智能切分,通常会生成较少的词条,适用于需要较粗粒度分词的场景。
  • ik_max_word:最细切分,细粒度:ik_max_word 模式会进行最细粒度的切分,尽可能生成更多的词条,适用于需要细粒度分词的场景。

IK 分词器如何拓展词条?如何停用词条?

IK 分词器可以通过配置文件 IKAnalyzer.cfg.xml 来拓展词条和停用词条。

拓展词条:

  • 在 IKAnalyzer.cfg.xml 文件中,通过 <entry key="ext_dict"> 标签指定拓展词典文件的路径。
  • 在拓展词典文件中添加你想要拓展的词条。

停用词条:

  • 在 IKAnalyzer.cfg.xml 文件中,通过 <entry key="ext_stopwords"> 标签指定停用词典文件的路径。
  • 在停用词典文件中添加你想要停用的词条。

示例配置

IKAnalyzer.cfg.xml 示例

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!-- 用户可以在这里配置自己的扩展字典 --><entry key="ext_dict">mydict.dic</entry><!-- 用户可以在这里配置自己的扩展停止词字典 --><entry key="ext_stopwords">stopword.dic</entry>
</properties>

自定义词典文件 mydict.dic 示例

自定义词汇1
自定义词汇2

停用词典文件 stopword.dic 示例

的
是
在

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/53863.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

运放模块的选型参数

增益带宽积-----尤其重要&#xff1a; GWB 增益*带宽 压摆率&#xff1a; 高带宽的运放一般都是电流型运放&#xff1a; 注意压摆率计算公式里面的Vopp参数是放大后的电压最大值&#xff1a; 参数&#xff0c;布局一定参考数据手册&#xff01;&#xff01;&#xff01;&…

关于AI副业,能说的都说了(最核心3大赛道、机会、方向)

AI&#xff0c;是生产力工具~ AI&#xff0c;也是焦虑和痛点 一直有小伙伴在问AI副业的事儿&#xff0c;之前也分享过很多。 但是&#xff0c;很多人对AI于副业的作用&#xff0c;过于表面和形式&#xff0c;所以&#xff0c;狂金来叨叨一下最核心的3大赛道&#xff0c;希望…

本地部署ollama大模型

方案一 1. 安装 Docker Ollama 大模型通常是通过 Docker 来运行的&#xff0c;因此首先需要确保本地已经安装了 Docker。如果还没有安装 Docker&#xff0c;可以参考以下安装步骤&#xff1a; Mac 用户&#xff1a; 前往 Docker 官网 下载并安装 Docker Desktop。安装完成后&…

【C语言】动态内存管理:malloc、calloc、realloc、free

本篇介绍一下C语言中的malloc/calloc/realloc。 使用这些函数需要包含头文件<stdlib.h>。malloc/calloc/realloc申请的空间都是 堆区的。 1.malloc和free 1.1 malloc C语言提供了一个动态内存开辟的函数malloc&#xff0c;函数原型如下。 void* malloc(size_t size);…

确保架构与业务一致性和合规性的成功转型之路:理论与实践的全面解读

架构与业务一致性在数字化转型中的重要性 在数字化转型的过程中&#xff0c;企业架构与业务的一致性是确保技术变革能够真正推动业务发展的关键因素之一。企业架构不仅要支持业务需求&#xff0c;还需要确保与行业标准、法律法规的合规性。通过将理论转化为实践&#xff0c;企…

渗透测试--文件上传常用绕过方式

文件上传常用绕过方式 1.前端代码&#xff0c;限制只允许上传图片。修改png为php即可绕过前端校验。 2.后端校验Content-Type 校验文件格式 前端修改&#xff0c;抓取上传数据包&#xff0c;并且修改 Content-Type 3.服务端检测&#xff08;目录路径检测&#xff09; 对目…

无人机专业实操重要性凸显,组装、调试、改装技术详解

无人机专业的实操性在当今技术飞速发展的背景下显得尤为重要&#xff0c;这不仅体现在无人机的日常应用上&#xff0c;还贯穿于无人机的组装、调试及改装等关键环节中。以下是对这些技术环节的详细解析&#xff1a; 一、无人机组装技术 无人机的组装是无人机技术的基础&#x…

mysql8.0安装后没有my.ini

今天安装mysql后想改一下配置文件看了一下安装路径 C:\Program Files\MySQL\MySQL Server 8.0 发现根本没有这个文件查看隐藏文件也没用查了之后才知道换地方了和原来的5.7不一样 新地址是C:\ProgramData\MySQL\MySQL Server 8.0 文件也是隐藏的记得改一下配置

Json-Rpc框架(Muduo库快速上手)

阅读导航 引言一、Muduo库简介二、Muduo库常见接口1. TcpServer类基础介绍2. EventLoop类基础介绍3. TcpConnection类基础介绍4. TcpClient类基础介绍5. Buffer类基础介绍 三、Muduo库使用示例⭕英译汉服务器⭕英译汉客户端 引言 在上一篇文章中&#xff0c;我们简要介绍了在项…

SpringBoot教程(安装篇) | Docker Desktop的安装(Windows下的Docker环境)

SpringBoot教程&#xff08;安装篇&#xff09; | Docker Desktop的安装&#xff08;Windows下的Docker环境&#xff09; 前言如何安装Docker Desktop资源下载安装启动&#xff08;重点&#xff09;加入汉化包 设置加速镜像 前言 如果你在 Windows 上&#xff0c;确保 Docker …

Java实现找色和找图功能

某天&#xff0c;张三接到一个任务需求&#xff0c;将一个Excel表格里面的员工信息&#xff0c;录入到员工系统里面&#xff0c;由于数据量非常大&#xff0c;操作起来巨慢。经过一段时间的操作和观察&#xff0c;他发现这种操作&#xff0c;非常有规律&#xff0c;基本就是一些…

huggingface的transformers与datatsets的安装与使用

目录 1.安装 2.分词 2.1tokenizer.encode&#xff08;&#xff09; 2.2tokenizer.encode_plus &#xff08;&#xff09; 2.3tokenizer.batch_encode_plus&#xff08;&#xff09; 3.添加新词或特殊字符 3.1tokenizer.add_tokens&#xff08;&#xff09; 3.2 token…

第L4周:机器学习-KNN总结-分类

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 概念&#xff1a; 在第L4周&#xff1a;机器学习-K-邻近算法模型&#xff08;KNN&#xff09;-CSDN博客中学习了KNN的基本概念&#xff0c;本次主要加深印象&a…

锐捷 NBR 1300G路由器 越权CLI命令执行漏洞

漏洞描述 锐捷NBR 1300G路由器 越权CLI命令执行漏洞&#xff0c;guest账户可以越权获取管理员账号密码 漏洞复现 FOFA title"锐捷网络 --NBR路由器--登录界面" 请求包 POST /WEB_VMS/LEVEL15/ HTTP/1.1 Host: Connection: keep-alive Content-Length: 73 Autho…

硬件设计-噪声的学习

目录 LDO 噪声和 PSRR ​编辑 噪声类型 数据表中的噪声规格 哪种规格适合您的应用 如何降低 LDO 噪声&#xff1f; LDO 噪声的影响 LDO 噪声和 PSRR 低压差线性稳压器 (LDO) 为调节由较高电压输入产生的输出电压提供了一种简单方法。虽然操作简单&#xff0c;但其自生噪…

如何禁止电脑上某个软件运行?电脑设置禁止运行软件的4个方法速成

在日常使用电脑的过程中&#xff0c;可能会遇到需要禁止某些软件运行的情况。 无论是为了防止员工随意使用与工作无关的软件&#xff0c;还是为了管理孩子的电脑使用时间&#xff0c;禁止特定软件运行都是有效的解决方案。 下面介绍4个速成方法&#xff0c;帮你轻松禁止电脑上…

QQ机器人搭建

使用QQ官方机器人Python SDK和三方框架搭建QQ群聊机器人 文章目录 使用QQ官方机器人Python SDK和三方框架搭建QQ群聊机器人前言编写机器人代码机器人监听群聊进行文字回复机器人监听群聊进行图片回复机器人监听群聊进行文件发送机器人监听群聊进行视频发送机器人监听群聊进行语…

3.js - 运动曲线

这个球&#xff0c;绕着这个红色的线圈转 代码 import * as THREE from three import { OrbitControls } from three/examples/jsm/controls/OrbitControlslet scene,camera,renderer,controls nulllet moon,earth null// 根据&#xff0c;一系列的点&#xff0c;创建曲线 le…

【全新课程】正点原子《基于GD32 ARM32单片机项目实战入门》培训课程上线!

正点原子《基于GD32 ARM32单片机项目实战入门》全新培训课程上线啦&#xff01;正点原子工程师手把手教你学&#xff01;彻底解决ARM32单片机项目入门难的问题&#xff01; 一、课程介绍 本课程专为ARM32单片机的入门学习者设计&#xff0c;涵盖了环境搭建、编程软件使用、模…

ML 系列:机器学习和深度学习的深层次总结(08)—欠拟合、过拟合,正确拟合

ML 系列赛&#xff1a;第 9 天 — Under、Over 和 Good Fit 文章目录 一、说明二、了解欠拟合、过拟合和实现正确的平衡三、关于泛化四、欠拟合五、过拟合六、适度拟合七、结论 一、说明 在有监督学习过程中&#xff0c;对于指定数据集进行训练&#xff0c;训练结果存在欠拟合…