《深度学习》OpenCV 高阶 图像金字塔 用法解析及案例实现

目录

一、图像金字塔

1、什么是图像金字塔

2、图像金字塔作用

        1)金字塔尺度间的图像信息补充

        2)目标检测与识别

        3)图像融合与拼接

        4)图像增强与去噪

        5)图像压缩与编码

二、用法解析

1、向下采样

        1)概念

        2)做法

        3)代码实现

        运行结果:

2、向上采样

        1)概念

        2)做法

        3)上下采样区别        

        4)代码实现

        运行结果:

3、拉普拉斯金字塔

        1)概念        

        2)拉普拉斯金字塔定义

        3)拉普拉斯金字塔构建过程

        4)代码实现

运行结果:


一、图像金字塔

1、什么是图像金字塔

        图像金字塔是由一幅图像多个不同分辨率子图构成的图像集合。是通过一个图像不断的降低采样率产生的,最小的图像可能仅仅有一个像素点。图像金字塔的底部是待处理的高分辨率图像(原始图像),而顶部则为其低分辨率的近似图像。

2、图像金字塔作用

        1)金字塔尺度间的图像信息补充

                在不同尺度的图像金字塔中,每一层图像都包含了原始图像在不同空间尺度上的信息。这样可以提供更全面的图像信息,使得后续的图像处理和分析算法能够更好地利用图像特征。

        2)目标检测与识别

                金字塔可以用于目标检测和识别算法中的多尺度搜索,通过在不同尺度的金字塔中检测目标并进行匹配,可以提高检测的准确率和鲁棒性。

        3)图像融合与拼接

                在图像融合和拼接任务中,金字塔可以提供多尺度的图像信息,从而实现更精细和准确的融合和拼接结果。

        4)图像增强与去噪

                金字塔可以用于图像增强和去噪算法中,通过在不同尺度上对图像进行处理,可以有效地提高图像质量,并去除图像中的噪声。

        5)图像压缩与编码

                金字塔可以用于图像压缩和编码算法中,通过对图像进行分解和编码,可以实现更高的压缩比和更好的图像质量。

二、用法解析

1、向下采样

        1)概念

                向金字塔顶部移动时,图像的尺寸和分辨率都不断地降低。通常情况下,每向上移动一级,图像的宽和高都降低为原来的1/2

        2)做法

                1、高斯滤波

                2、删除其偶数行和偶数列

                3、OpenCV函数cv2.pyrDown()

        3)代码实现
import cv2
face = cv2.imread('face.jpg',cv2.IMREAD_GRAYSCALE)  # 以灰度图的形式加载
cv2.imshow('face',face)   # 展示原图 灰度图
cv2.waitKey(0)
face_down_1 = cv2.pyrDown(face)   # 对原图做下采样
cv2.imshow('face_down_1',face_down_1)
cv2.waitKey(0)
face_down_2 = cv2.pyrDown(face_down_1)   # 再做下采样
cv2.imshow('face_down_2',face_down_2)
cv2.waitKey(0)

        运行结果:

        注意:在经过下采样时图片的尺寸必须为偶数,因为下采样是将原图尺寸缩小一半,奇数大小无法缩放

2、向上采样

        1)概念

                通常将图像的宽度和高度为原来的2倍。这意味着,向上采样的结果图像的大小是原始图像的4倍。因此,要在结果图像中补充大量的像素点。对新生成的像素点进行赋值的行为,称为插值

        2)做法

                1、插值         

                2、高斯滤波

        3)上下采样区别        

                通过以上分析可知,向上采样和向下采样是相反的两种操作。但是,由于向下采样会丢失像素值,所以这两种操作并不是可逆的。也就是说,对一幅图像先向上采样、再向下采样,是无法恢复其原始状态的;同样,对一幅图像先向下采样、再向上采样也无法恢复到原始状态

        4)代码实现
# 上采样
face_up_1 = cv2.pyrUp(face)
cv2.imshow('face_up_1',face_up_1)  # G1
cv2.waitKey(0)
face_up_2 = cv2.pyrUp(face_up_1)
cv2.imshow('face_up_2',face_up_2)  # G2
cv2.waitKey(0)
#
# # # #对下采用后图像进行上采样,图像变模糊,无法复原
face_down_1_up = cv2.pyrUp(face_down_1)  # 下采样G1
face_down_2_up = cv2.pyrUp(face_down_2)  # 下采样G2cv2.imshow('face_down_1_up',face_down_1_up)
cv2.imshow('face_down_2_up',face_down_2_up)
cv2.waitKey(0)

        运行结果:

3、拉普拉斯金字塔

        1)概念        

                为了在向上采样是能够恢复具有较高分辨率的原始图像,就要获取在采样过程中所丢失的信息,这些丢失的信息就构成了拉普拉斯金字塔。 也是拉普拉斯金字塔是有向下采样时丢失的信息构成。

        2)拉普拉斯金字塔定义

                Li = Gi – pyrUp(pyrdown(Gi))

                        Li:表示拉普拉斯金字塔中的第i层

                        Gi:表示高斯金字塔中的第i层

                        Gi+1 :表示高斯金字塔中的第 i+1 层

        3)拉普拉斯金字塔构建过程

                1、首先,原始图像通过降采样操作缩小尺寸,得到一系列不同分辨率的图像。

                2、然后,每一级的图像通过上采样操作放大到原始尺寸,与上一级降采样得到的图像相减得到拉普拉斯金字塔的每一级

                3、重复上述步骤,直到达到金字塔的最底层(分辨率最低)

                4、拉普拉斯金字塔的每一级包含了每个像素与上一级相同位置的像素之间的高频信息,可以理解为图像的细节信息。较高级别的金字塔包含了较低级别金字塔中消失的细节信息,可以通过级联金字塔的级别进行图像重建。

        4)代码实现

                       (需要衔接上述代码)

# #  拉普拉斯金字塔
L0 = face - face_down_1_up
L1 = face_down_1 - face_down_2_upfuyuan = face_down_1_up + L0
cv2.imshow('L0',L0)
cv2.imshow('L1',L1)
cv2.waitKey(0)
cv2.imshow('fuyuan',fuyuan)
cv2.waitKey(0)
运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/52696.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用SQL语句查询MySQL数据表

6.1 创建单表基本查询 1&#xff0e;Select 语句的语法格式及其功能 &#xff08;1&#xff09;Select 语句的一般格式。 Select < 字段名称或表达式列表 > From < 数据表名称或视图名称 > [ Where < 条件表达式 > ] [ Group By < 分组的字段名称…

xss-labs-master通关教程

一.level1 先来进行一下代码审计 <?php ini_set("display_errors", 0);//关闭错误显示 $str $_GET["name"]; //接受URL来的get形式的name传参 echo "<h2 aligncenter>欢迎用户".$str."</h2>";//在网页输出&#x…

STM32 之 SDRAM 详解

目录 前言 一、SDRAM 简介 二、SDRAM的组成原理 2.1存储单元阵列 2.1.1地址译码 2.1.2存储电容 2.2控制逻辑 2.2.1时钟同步 2.2.2命令解码 2.2.3模式寄存器 2.3数据输入 / 输出缓冲 2.3.1数据总线 2.3.2数据锁存 2.4刷新电路 2.4.1自动刷新 2.4.2自刷新 三、S…

SaaS化多租户实现的两种方法

SaaS化多租户实现的两种方法 SaaS系统的定义 SaaS&#xff0c;全称为Software-as-a-Service&#xff08;软件即服务&#xff09;&#xff0c;是一种基于云计算的软件交付模式。而SaaS系统&#xff0c;即是通过这种模式提供给用户的软件系统。即多租户系统&#xff0c;每个租户…

腾讯云升级多个云存储解决方案 以智能化存储助力企业增长

9月6日&#xff0c;在腾讯数字生态大会腾讯云储存专场上&#xff0c;腾讯云升级多个存储解决方案&#xff1a;Data Platform 数据平台解决方案重磅发布&#xff0c;数据加速器 GooseFS、数据处理平台数据万象、日志服务 CLS、高性能并行文件存储 CFS Turbo 等多产品全新升级&am…

TypeScript 扩展

扩展 ?:可选参数 可选链事实上并不是TypeScript独有的特性&#xff0c;它是ES11&#xff08;ES2020&#xff09;中增加的特性 可选链使用可选链操作符 ? 作用是当对象的属性不存在时&#xff0c;会短路&#xff0c;直接返回undefined&#xff0c;如果存在&#xff0c;那么…

SpringCloud集成ELK

1、添加依赖 <dependency><groupId>net.logstash.logback</groupId><artifactId>logstash-logback-encoder</artifactId><version>6.1</version> </dependency>2、在logback-spring.xml中添加配置信息&#xff08;logback-sp…

Android SystemUI组件(06)导航栏创建分析虚拟按键

该系列文章总纲链接&#xff1a;专题分纲目录 Android SystemUI组件 本章关键点总结 & 说明&#xff1a; 说明&#xff1a;本章节持续迭代之前章节的思维导图&#xff0c;主要关注左侧SystemBars分析中导航栏部分即可。 1 导航栏创建之makeStatusBarView 通过上一篇文章的…

前端 + 接口请求实现 vue 动态路由

前端 接口请求实现 vue 动态路由 在 Vue 应用中&#xff0c;通过前端结合后端接口请求来实现动态路由是一种常见且有效的权限控制方案。这种方法允许前端根据用户的角色和权限&#xff0c;动态生成和加载路由&#xff0c;而不是在应用启动时就固定所有的路由配置。 实现原理…

el-tree父子不互相关联时,手动实现全选、反选、子级全选、清空功能

el-tree父子不互相关联时&#xff0c;手动实现全选、反选、子级全选、清空功能 1、功能实现图示 2、实现思路 当属性check-strictly为true时&#xff0c;父子节点不互相关联&#xff0c;如果需要全部选中或选择某一节点下的全部节点就必须手动选择每个节点&#xff0c;十分麻…

【mysql】逻辑运算符

逻辑运算符 逻辑运算符主要是为了判断表达式的真假,返回结果也是1,0,null OR 这里面或就是两个条件或的关系,比如我要department_id等于10和等于20的情况就可以使用或. SELECT last_name,salary,department_id FROM employees WHERE department_id10 OR department_id20 …

CTF——简单的《WEB》

文章目录 一、WEB1、easysql2、baby_web3、baby_sql4、upload_easy5、easygame拓展1.1拓展1.2 6、ht_ssti7、包容乃大 一、WEB 1、easysql 题目描述&#xff1a; sql注入漏洞 1.常用的sql注入测试语句 2.sql注入bypass 解题思路 这边提示基本给的也很完整的&#xff0c;不…

C++开发基础之理解 CUDA 编译配置:`compute_XX` 和 `sm_XX` 的作用

前言 在 CUDA 编程中&#xff0c;确保代码能够在不同的 NVIDIA GPU 上高效运行是非常重要的。为了实现这一点&#xff0c;CUDA 编译器 (nvcc) 提供了多种配置选项&#xff0c;其中 compute_XX 和 sm_XX 是两个关键的编译选项。本文将深入探讨这两个选项的作用及其配置顺序&…

大一新生以此篇开启你的算法之路

各位大一计算机萌新们&#xff0c;你们好&#xff0c;本篇博客会带领大家进行算法入门&#xff0c;给各位大一萌新答疑解惑。博客文章略长&#xff0c;可根据自己的需要观看&#xff0c;在博客中会有给大一萌新问题的解答&#xff0c;请不要错过。 入门简介&#xff1a; 算法…

可信的人类与人工智能协作:基于人类反馈和物理知识的安全自主驾驶强化学习

可信的人类与人工智能协作&#xff1a;基于人类反馈和物理知识的安全自主驾驶强化学习 Abstract 在自动驾驶领域&#xff0c;开发安全且可信赖的自动驾驶策略仍然是一项重大挑战。近年来&#xff0c;结合人类反馈的强化学习&#xff08;RLHF&#xff09;因其提升训练安全性和…

中国银河资产笔试25届考什么?如何通过考试|附真题库面试攻略

嘿&#xff0c;各位小伙伴们&#xff01;我是职小豚&#xff0c;今天就带大家一起探秘中国银河资产 25 届秋招&#xff0c;为大家揭开这场金融之旅的神秘面纱。 一、中国银河资产介绍 中国银河资产&#xff0c;那可是金融领域的璀璨巨星&#xff01;它就像一座闪耀着智慧光芒…

unity安装配置和vs2022联动教程

目录 1.选择vs2022配置 2.安装unity 2.1安装unity hub 2.2注册个人账号 2.3安装编辑器 2.4修改为简体中文 2.5添加许可证 2.6安装位置修改 3.项目的创建 3.1如何创建 3.2如何选择 3.3配置语言 3.4去哪里找语言包 4.unity编辑器窗口的介绍 4.1游戏的运行和停止 4…

11、Hive+Spark数仓环境准备

1、 Hive安装部署 1&#xff09;把hive-3.1.3.tar.gz上传到linux的/opt/software目录下 2&#xff09;解压hive-3.1.3.tar.gz到/opt/module/目录下面 [shuidihadoop102 module]$ tar -zxvf /opt/software/hive-3.1.3.tar.gz -C /opt/module/ 3&#xff09;修改hive-3.1.3-b…

《深度学习》深度学习 框架、流程解析、动态展示及推导

目录 一、深度学习 1、什么是深度学习 2、特点 3、神经网络构造 1&#xff09;单层神经元 • 推导 • 示例 2&#xff09;多层神经网络 3&#xff09;小结 4、感知器 神经网络的本质 5、多层感知器 6、动态图像示例 1&#xff09;一个神经元 相当于下列状态&…

安卓开发板_联发科MTK开发评估套件串口调试

串口调试 如果正在进行lk(little kernel ) 或内核开发&#xff0c;USB 串口适配器&#xff08; USB 转串口 TTL 适配器的简称&#xff09;对于检查系统启动日志非常有用&#xff0c;特别是在没有图形桌面显示的情况下。 1.选购适配器 常用的许多 USB 转串口的适配器&#xf…