本文数据结构讲解参考书目:
通过网盘分享的文件:数据结构 C语言版.pdf
链接: https://pan.baidu.com/s/159y_QTbXqpMhNCNP_Fls9g?pwd=ze8e 提取码: ze8e
数据结构基础讲解(六)——串的专项练习-CSDN博客
个人主页:樱娆π-CSDN博客
大佬们!!!需要互三的d我!!!!1
目录
数组的类型定义
抽象数据类型数组可形式地定义
基本操作
数组的顺序存储
特殊矩阵的压缩存储
1.对称矩阵
2.三角矩阵
1)上三角矩阵
2) 下三角矩阵
3.对角矩阵
广 义 表
广义表的运算
广义表的存储结构
1.头尾链表的存储结构
2.扩展线性链表的存储结构
总结
广义表的举例说明
广义表的深度
广义表的元素访问
广义表的元素插入
广义表的元素删除
广义表的遍历
* 本文中提到的aij表示下标为ij
数组的类型定义
数组是由类型相同的数据元素构成的有序集合,每个元素称为数组元素,每个元素受 n(n>=1) 个线性关系的约束,每个元素在 n 个线性关系中的序号儿 i1, …,in 称为该元素的下标,可 以通过下标访问该数据元素。因为数组中每个元素处千 n(n>=1) 个关系中,故称该数组为 n 维 数组。数组可以看成是线性表的推广,其特点是结构中的元素本身可以是具有某种结构的数据, 但属于同一数据类型.
抽象数据类型数组可形式地定义
ADT Array{
数据对象: ji=0, ···,bi-1, i=l, 2, …, n,
D = { a• 五j2"·Jn·ln(>O)称为数组的维数,坛是数组第i 维的长度,
ji 是数组元素的第j维下标,aj1j2...jn
数据关系: R = {Rl,R2, …, Rn}
基本操作:
}ADT Array
基本操作
基本操作 | 初始条件 | 操作结果 |
InitArray (&A, n, bound i, ···, boundn) | / | 若维数n和各维长度合法, 则构造相应的数组A, 并返回OK |
DestroyArray (&A) | / | 销毁数组A |
Value(A,&e, indexl , …,indexn) | A是n维数组,e为元素变量,随后是n个下标值 | 若各下标不超界,则e赋值为所指定的 A 的元素值, 并返回OK |
Assign(&A,e, indexl, …,indexn) | A是 n 维数组, e 为元素变扯,随后是 n 个下标值 | 若下标不超界,则将 e 的值赋给所指定的A的元素, 并返回OK |
数组的顺序存储
由千数组一般不做插入或删除操作, 也就是说; 一旦建立了数组, 则结构中的数据元素个数 和元素之间的关系就不再发生变动。 因此, 采用顺序存储结构表示数组比较合适
假设每个数据元素占 L 个存储单元, 则二维数组 A[0.. m-1, 0 .. n-1] (即下标从 0 开始, 共有 m行n列)中任一元素 au的存储位置可由下式确定
LOC(i, j) = LOC(0, 0) + (nx i + j)L
式中, LOC(i,J)是 au的存储位置; LOC(O, 0) 是 aoo的存储位置, 即二维数组 A 的起始存储位置, 也称为基地址或基址.
注:此处没有链式存储。
特殊矩阵的压缩存储
假若值相同的元素或者零元素在矩阵中的分布有一定规律, 则称此类矩阵为特殊矩阵。
1.对称矩阵
若 n 阶矩阵A中的元满足下述性质
则称为n阶对称矩阵
对于对称矩阵,可以为每一对对称元分配一个存储空间,则可将忙个元压缩存储到 n(n + 1)/2 个元的空间中, 不失一般性, 可以行序为主序存储其下三角 (包括对角线)中的元。
2.三角矩阵
以主对角线划分,三角矩阵有上三角矩阵和下三角矩阵两种。上三角矩阵是指矩阵下三角(不 包括对角线)中的元均为常数c或零的n阶矩阵, 下三角矩阵与之相反。 对三角矩阵进行压缩存 储时, 除了和对称矩阵一样, 只存储其上 (下)兰角中的元素之外, 再加一个存储常数c的存储 空间即可
1)上三角矩阵
sa[k]和矩阵元 aij 之间的对应关系为
2) 下三角矩阵
sa[k]和矩阵元 aij 之间的对应关系为
3.对角矩阵
对角矩阵 所有的非零元都集中在以主对角线为中心的带状区域中,即除了主对角线上 和直接在对角线上、下方若干条对角线上的元之外,所有其他的元皆为零.
广 义 表
广义表是线性表的推广,也称为列表,广义表一般记作:
LS = (a1 , a2, · · ·, an )
其中,LS是广义表(a1, a2, …,an )的名称,n是其长度。广义表的定义中,a; 可以是单个元素,也可以是广义表,分别称为广义表 LS 的原子和子表。
- A = ()—A 是一个空表, 其长度为零
- B=(e)-B 只有一个原子 e, 其长度为1
- C= (a, (b, c, d))—C的长度为2, 两个元素分别为原子 a 和子表(b,c, d)
- D = (A, B, C)—D 的长度为3,3个元素都是广义表。显然,将子表的值代入后,则有 D = ((), (e), (a, (b, c, d)))
- E = (a, E)—这是一个递归的表, 其长度为2。E 相当于一个无限的广义表 E=(a, (a, (a, ···)))
广义表的重要结论:
- 广义表的元素可以是子表,而子表的元素还可以是子表……由此,广义表是一个多层次 的结构,可以用图形象地表示。
- 广义表可为 其他广义表所共享。例如在上述例子中,广义表 A、 B 和 C 为 D 的子表, 则在 D 中可以不必列出子表的值,而是通过子表的名称来引用
- 广义表可以是一个递归的表,即广义表也可以是 其本身的一个子表。例如,表 E 就是一 个递归的表
广义表的运算
取表头 GetHead(LS): 取出的表头为非空广义表的第一个元素,它可以是一个单原子,也 可以是一个子表。
取表尾 GetTail(LS):取出的表尾为除去表头之外,由其余元素构成的表。即表尾一定是 一个广义表
注:广义表()和(())不同。前者为空表,长度n = 0; 后者长度n = 1, 可分解得到 其表头、 表尾均为空表()
广义表的存储结构
由于广义表中的数据元素可以有不同的结构(或是原子,或是列表),因此难以用顺序存储结 构表示,通常采用链式存储结构。常用的链式存储结构有两种,头尾链表的存储结构和扩展线性 链表的存储结构。
1.头尾链表的存储结构
由千广义表中的数据元素可能为原子或广义表,由此需要两种结构的结点:一种是表结 点, 用以表示广义表; 一种是原子结点, 用以表示原子。从上节得知:若广义表不空, 则可 分解成表头和表尾, 因此, 一对确定的表头和表尾可唯一确定广义表。 一个表结点可由3个 域组成:标志域、 指示表头 的指针域和指示表尾的指针域。而原子结点只需两个域 :标志域 和值域。
具体操作:
//-----广义表的头尾链表存储表示 -----typedef enum{ATOM, LIST } ElemTag;
typedef struct GLNode
{
ElemTag tag;
union
{
AtomType atom;
struct{struct GLNode*hp, *tp; }ptr;
};
}*GList;
- 除空表的表头指针为空外, 对任何非空广义表, 其表头指针均指向一个表结点, 且该结点中的 hp 域指示广义表表头(或为原子结点 , 或为表结点), tp 域指向广义表表尾(除非表尾为 空, 则指针为空, 否则必为表结点)
- 容易分清列表中原子和子表所在层次。 如在广义表 D 中, 原子 a 和 e 在同一层次上, 而 b 、 c 和 d 在同一层次且比 a 和 e 低一层, B 和 C 是同一层的子表
- 最高层的表结点个数即为广义表的长度
2.扩展线性链表的存储结构
这种结构中, 无论是原子结点还是表结点均由三个域组成
总结
(1)串是内容受限的线性表,它限定了表中的元素为字符。串有两种基本存储结构:顺序存 储和链式存储,但多采用顺序存储结构。串的常用算法是模式匹配算法,主要有BF算法和KMP 算法。BF算法实现简单 ,但存在回溯,效率低,时1 、 郎 司复杂度为O(m x n)0 KMP算法对BF算法 进行改进,消除回溯,提高了效率,时间复杂度为O(m + n)。
(2)多维数组可以看成是线性表的推广,其特点是结构中的元素本身可以是具有某种结 构的数据,但属千同一数据类型。 一个n维数组实质上是n个线性表的组合, 其每一维都 是一个线性表。数组一般采用顺序存储结构,故存储多维数组时,应先将 其确定转换为 一 维结构,有按 “行 “ 转换和按 “列 “ 转换两种。科学与工程计算中的矩阵通常用二维数组 来表示,为了节省存储空间,对于几种常见形式的特殊矩阵,比如对称矩阵、 三 角矩阵和 对角矩阵,在存储时可进行压缩存储,即为 多个值相同的元只分配一个存储空间,对零元 不分配空间。
(3)广义表是另外一种线性表的推广形式,表中的元素可以是 称为原子的单个元素,也 可以是一个子表,所以线性表可以看成广义表的特例。广义表的结构相当灵活,在某种前提 下 ,它可以兼容线性表、数组、树和有向图等各种常用的数据结构。广义表的常用操作有取 表头和取表尾。广义表通常采用链式存储结构:头尾链表的存储结构和扩展线性链表的存储 结构。
广义表的举例说明
串和数组大家应该都很清楚,但广义表应该是比较对新手而言比较陌生,那么我将用代码加深大家的印象。
广义表是一种递归的数据结构,它可以表示线性表、树形结构甚至图结构。它允许元素是原子或其他广义表,因此可以用来表示复杂的数据结构。
广义表的深度
给定一个广义表 L = (a, (b, c), d)
,请计算该广义表的深度
广义表的深度是指从根节点到最深节点的路径长度。
def depth(L): if isinstance(L, list): max_depth = 0 for sublist in L: max_depth = max(max_depth, depth(sublist)) return max_depth + 1 else: return 0 L = ['a', ['b', 'c'], 'd']
print(f"广义表 L 的深度为:{depth(L)}") # 输出:广义表 L 的深度为:2
广义表的元素访问
给定一个广义表 L = (a, (b, c), d)
,请访问该广义表的第 2 个元素
L = ['a', ['b', 'c'], 'd']
print(f"广义表 L 的第 2 个元素为:{L[1]}") # 输出:广义表 L 的第 2 个元素为:['b', 'c']
广义表的元素插入
给定一个广义表 L = (a, (b, c), d)
,请在该广义表的第 2 个元素的开头插入元素 'e'
L = ['a', ['b', 'c'], 'd']
L[1].insert(0, 'e')
print(f"插入元素 'e' 后,广义表 L 为:{L}") # 输出:插入元素 'e' 后,广义表 L 为:['a', ['e', 'b', 'c'], 'd']
广义表的元素删除
给定一个广义表 L = (a, (b, c), d)
,请删除该广义表的第 2 个元素的第 2 个元素
L = ['a', ['b', 'c'], 'd']
del L[1][1]
print(f"删除元素后,广义表 L 为:{L}") # 输出:删除元素后,广义表 L 为:['a', ['b'], 'd']
广义表的遍历
给定一个广义表 L = (a, (b, c), d)
,请遍历该广义表的所有元素
def traverse(L): for element in L: if isinstance(element, list): traverse(element) else: print(element) L = ['a', ['b', 'c'], 'd']
traverse(L) # 输出:a b c d
————由于博主还是大三的在读生,时间有限,每天会不定时更新一些学习经验和一些32的项目,如果喜欢就点点关注吧,大佬们!!!!————