【网络流】——初识(最大流)

网络流-最大流

    • 基础信息
      • 引入
      • 一些概念
      • 基本性质
  • 最大流
      • 定义
    • Ford–Fulkerson 增广
    • Edmons−Karp算法
    • Dinic 算法
      • 参考文献

基础信息

引入

假定现在有一个无限放水的自来水厂和一个无限收水的小区,他们之间有多条水管和一些节点构成。

每一条水管有三个属性:流向,流量,容量。我们用 ( u , v ) (u,v) (u,v) 表示一条水管,这意味着水管中的水只能从 u u u 流向 v v v,而不能从 v v v 流向 u u u。流量即经过这条水管的单位时间内经过这条水管的水量。

我们将其模型化成为一个有向图,如下图所示,边上的数字即为水管的容量,流向用箭头来表示。当然,现在所有的水管流量都是 0 0 0

在这里插入图片描述

对于这一类型的有向图,我们称之为流网络。

一些概念

对于一个流网络,我们有如下几个概念:

  • 源点:发送流的节点。
  • 汇点:接收流的节点。
  • 弧:流网络图中的有向边,为了方便,后文均用“边或弧”表示
  • 弧的流量:在一个流网络中,每一条边都有一个流量,即单位时间内流经该边的流的量。一般地,我们使用流量函数 f ( x , y ) f(x,y) f(x,y) 表示 ( x , y ) (x,y) (x,y) 的流量。
  • 弧的容量:在一个流网络中,每一条边都会有一个容量限制,即边上流量的最大值。一般地,我们使用容量函数 c ( x , y ) c(x,y) c(x,y) 表示 ( x , y ) (x,y) (x,y) 的容量。
  • 弧的残量:即每一条边的剩余容量,可以表示为 c ( x , y ) − f ( x , y ) c(x,y)-f(x,y) c(x,y)f(x,y),用 c f ( u , v ) c_f(u,v) cf(u,v) 表示
  • 容量网络:已知每一条边的容量的流网络即为容量网络
  • 流量网络:已知每一条边的流量的流网络即为流量网络
  • 残量网络:已知每一条边的残量的流网络即为残量网络。所有边的流量均为 0 0 0 的残量网络就是容量网络。用 G f G_f Gf 表示,即 G f = ( V , E f ) , E f = G_f=(V,E_f),E_f= Gf=(V,Ef),Ef={ ( u , v ) ∣ c f ( u , v ) > 0 (u,v)|c_f(u,v)>0 (u,v)cf(u,v)>0 }

请确保你对概念比较熟悉

基本性质

  1. 容量限制: ∀ ( x , y ) ∈ E , 0 ≤ f ( x , y ) ≤ c ( x , y ) \forall (x,y)\in E,0\le f(x,y)\le c(x,y) (x,y)E,0f(x,y)c(x,y)
  2. 斜对称性: ∀ ( x , y ) ∈ E , f ( x , y ) = − f ( y , x ) \forall (x,y)\in E,f(x,y)=-f(y,x) (x,y)E,f(x,y)=f(y,x)
  3. 流量守恒:除了源点与汇点之外,流入任何节点的流一定等于流出该节点的流。

最大流

定义

在这里插入图片描述
通俗地讲,回到引例,现在有一个问题需要我们去解决:水厂在单位时间内最多能发送多少水给小区?
这就是网络流中的一个问题:最大流问题。
在这里插入图片描述

Ford–Fulkerson 增广

  • 假设有源点到汇点的一条可行路径 R R R,满足 ∀ ( x , y ) ∈ R , c f ( x , y ) > 0 \forall(x,y)∈R,c_f(x,y)>0 (x,y)R,cf(x,y)>0,即残量为严格大于 0 0 0,我们称 R R R 为一条增广路。
  • 此时我们可以得出一个简单的思路:在残量网络中不断地寻找增广路,从源点向汇点发送流。该增广路的流量满足 0 < f ≤ m i n ( c f ( x , y ) ) 0<f\le min(c_f(x,y)) 0<fmin(cf(x,y)),为了取得最大流,我们自然而然的令该增广路的流量为 min ⁡ ( c f ( x , y ) ) \min(c_f(x,y)) min(cf(x,y)),然后修改路径上每一条边的残量即可。
  • 这个思路即为Ford−Fulkerson方法,简称为FF方法。
  • 可以使用DFS实现基本的Ford−Fulkerson算法。
  • 为了保证算法的正确性,有时候我们需要缩减流网络中一些特定边的流量。
  • 举个例子,如图。

假定我们使用DFS找到了红色的这一条增广路径,显然此时源点到汇点的流量为1。此时图中不再有任何增广路径,但是这个流是最大流吗?
在这里插入图片描述
显然不是,我们可以找到更好的,如图:

在这里插入图片描述
此时流量为 2 2 2,这才是最大流。

  • 问题出在哪里?
  • 由于我们没有给程序一个反悔的机会,所以才会出现上面这样的尴尬情况。
  • 那么如何解决这个问题呢?
  • 引入“后向弧”。我们给每一条边 ( u , v ) (u,v) (u,v) 建立一条对应的反向边 ( v , u ) (v,u) (v,u),用于对正向边流量的缩减。
  • 很自然地,我们会把反向边的初始残量设置为 0 0 0,因为没有正向流量,无法缩减。
  • 那么观察下面的算法图示:

在这里插入图片描述
然后对于初学者可能会注意到:反向边的流量 f ( v , u ) f(v,u) f(v,u) 可能是一个负的,这里可以参考一下 OI-WIKI 的解释。

在这里插入图片描述
在这里插入图片描述

是不是有点懵?

  • 通俗的文字解释就是:反向边的功能是将正向边的流量往回推送,此时反向边推送的流量(反向流量)最多恰好把正向流量抵消,所以反向边的残量等于正向边流量。
  • 综上所述,反向边的残量应当是动态更新,一旦正向边的流量更新,反向边的残量也需要更新。

Edmons−Karp算法

观察到基于 DFS 的FF 可能不是很优。

  • 观察这样一张图,如果我们使用基于DFS实现的FF方法,假定一开始找到的增广路径为红色的这一条,那么我们可能需要反复进行 999 × 2 999\times 2 999×2次DFS才能够找到最大流。
    在这里插入图片描述
  • 但是事实上,我们在最好情况下只需要走两次(直接走 999 999 999 的边)就能够达到最大流。
  • 在这种情况下,我们引入EK算法。其基础仍然是FF方法,但是我们不再使用DFS,而是转为使用BFS寻找最短增广路改进效率,时间复杂度为 O ( n m 2 ) O(nm^2) O(nm2)

参考代码:

queue<int> que;flow[s]=0x3f3f3f3f;que.push(s);
for (int i=1;i<=n;i++)prep[i]=-1,pree[i]=0;
prep[s]=0;
while(!que.empty())
{int now=que.front();que.pop();for (int i=head[now];i;i=e[i].next){if(e[i].val>0&&prep[e[i].to]==-1){flow[e[i].to]=min(flow[now],e[i].val);//flow记录的是在增广路上经过该点的流量pree[e[i].to]=i;//用于记录前驱边的编号prep[e[i].to]=now;//用于记录前驱节点if (e[i].to==t) break;que.push(e[i].to);}}
}
if (prep[t]!=-1) return flow[t];
else return -1
  • 下一步就是对路径上的所有边进行信息的更新。
  • 现在有一个问题,我们如何快速取得反向边呢?
  • 对于链式前向星,我们设置第一条边的编号为 2 2 2 ,我们存入一条正向边时,下一条边就存入反向边,那么只要对一条边的编号异或 1 1 1 就能取得它对应的反向边。
  • 证明:偶数的二进制表示最后一位为 0 0 0 ,对这个偶数异或 1 1 1 相当于对这个偶数 + 1 +1 +1。奇数的二进制表示最后一位为 1 1 1,对这个奇数异或 1 1 1 相当于对这个奇数 − 1 -1 1
    那么路径的信息更新就可以轻松实现了。
    在这里插入图片描述

Dinic 算法

  • 由于EK算法每次只求一条最短增广路,其效率在某些情况下可能不够优秀。
  • 对于下面这一张图,如果我们使用EK算法,那么我们至少需要重复三次EK算法的流程才能求出最大流。

在这里插入图片描述

  • 自然而然地,我们会想到能不能实现多路增广呢?

于是 Dinic 算法就出来了。(其实就是把EK和FF融在一起)

Dinic算法的流程如下:

  1. BFS对流网络分层。
  2. DFS对图上增广路的信息进行更新。
    在这里插入图片描述

如图所示,此时已经完成了对于流网络的分层,点上的编号即为所在的层数。
这个时候我们从源点开始DFS,在最好情况下,我们能同时找到三条增广路,即标红色的三条。

  • BFS对图分层的作用在于一次可以得到多条长度相同的最短增广路。
  • 那么路径的信息应该如何更新呢?
  • 每次从当前点出发,选用从当前点所在层到下一层的边,发送一定的流量,流量的大小取边残量和当前点从源点获取的剩余流中两者的最小值。
  • 搜索完成后,即不再有流能够往后发送,或者能够抵达汇点。此时返回一个流量值,即这条增广路的流量(若不再有流能够往后发送,则返回的流量值为0),此时就能够对边和反向边的残量进行更新了。
  • Dinic算法就完成了,其时间复杂度为 O ( n 2 m ) O(n^2 m) O(n2m)
  • 显然,这样的时间复杂度并算不上多么高效,原因在于尽管我们一次BFS找到了多条增广路,但是DFS时路径的信息仍然是一条一条更新的。
    参考代码:
    BFS实现:
    在这里插入图片描述

实现难度不大,只是一个模板BFS。
dis数组用于记录层数,vis数组用于记录是否被访问过。
事实上vis数组是不必要的,因为dis数组也可以实现一样的功能。

DFS实现:
在这里插入图片描述

注意到,Dinic算法的复杂度上界也不是很优, 所以,我们会考虑对DFS的过程加入一定的优化。

当前弧优化

  • 在DFS的过程中,我们可能会多次经过一个点。我们会重复的处理一些边。
  • 但是事实上,在每次处理的过程中,已经处理完毕的边在这次DFS中不再有任何作用,一旦处理完毕,该边的“潜力”一定已经被榨干了。
  • 所以,我们每次只需要记录当前处理的边的编号,下次经过这个点的时候,可以直接从这条边开始。
  • 这就叫作当前弧优化。

证明:增广次数为 O ( m ) O(m) O(m),每次增广最多经过 O ( n ) O(n) O(n) 个点,总复杂度为 O ( n m ) O(nm) O(nm)

注意,不写这个优化,复杂度是错的,可能退化为 O ( n m 2 ) O(nm^2) O(nm2)

点优化:

  • 假如从一个点流不出流量,则把该点的dis变为 − 1 -1 1,这样这一次多路增广再也不会来了。

  • 大多数情况下这只能优化常数,但是在某些毒瘤题里面跑的很快。

这就是常用的两个优化,更多的可以参考 command_block大佬的博客。

虽然EK和Dinic的时间复杂度上界都不是非常优秀,但是在实际应用上效率非常高。
对于EK算法,一般能够解决 1 0 3 到 1 0 4 10^3 \text{到}10^4 103104 的网络流问题。
对于Dinic算法,一般能够解决 1 0 4 到 1 0 5 10^4 \text{到}10^5 104105 的网络流问题。

Dinic完整的参考代码:

#include<bits/stdc++.h>
#define int long long
#define IOS ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
using namespace std;
const int N=1e5+1,inf=1e9;
struct fy{int v,w,nxt;
}e[N];
int head[N],idx=1,n,m,s,t,ans=0,dis[N],cur[N],vis[N];
void add(int x,int y,int z){e[++idx].v=y,e[idx].w=z,e[idx].nxt=head[x],head[x]=idx;
}
bool bfs(){for(int i=1;i<=n;i++)dis[i]=0,vis[i]=0,cur[i]=head[i];vis[s]=1,dis[s]=1;queue<int>Q;Q.push(s);while(!Q.empty()){int u=Q.front();Q.pop();for(int i=head[u];i;i=e[i].nxt){int v=e[i].v;if(!vis[v]&&e[i].w>0){dis[v]=dis[u]+1;vis[v]=1;if(v==t)return 1;Q.push(v);}}}return 0;}
int dfs(int u,int flow){if(!flow||u==t)return flow;int used=0;for(int i=cur[u];i;i=e[i].nxt){cur[u]=i;int v=e[i].v;if(dis[u]+1!=dis[v])continue;int _=dfs(v,min(flow-used,e[i].w));if(_){e[i].w-=_;e[i^1].w+=_;used+=_;if(flow-used==0)return flow;}}return used;
}
signed main(){IOS;cin>>n>>m>>s>>t;for(int i=1,x,y,z;i<=m;i++)cin>>x>>y>>z,add(x,y,z),add(y,x,0);while(bfs())ans+=dfs(s,inf);cout<<ans<<"\n";return 0;
}

当然,常用的是Dinic,但还有MPN算法,ISAP,Push-Relabel 预流推进算法 等其他方法,可能以后会填坑

参考文献

  1. OI-WIKI
  2. command_block的博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/49863.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何查看cpu架构,查看CPU架构的方法

查看CPU架构的方法有很多&#xff0c;具体取决于你使用的操作系统。以下是一些常见的操作系统中查看CPU架构的方法&#xff1a; Windows查看CPU架构的方法 使用系统信息工具 按 Win R 打开运行窗口。输入 msinfo32 并按 Enter。在系统信息窗口中&#xff0c;找到“处理器”一…

懂个锤子Vue 项目工程化进阶⏫:

Vue项目工程化进阶⏫&#xff1a; 前言&#xff1a; 紧跟前文&#xff0c;目标学习Vue2.0——3.0&#xff1a; 懂个锤子Vue、WebPack5.0、WebPack高级进阶 涉及的技术栈… 当然既然学习框架的了&#xff0c;HTMLCSSJS三件套必须的就不说了&#xff1a; JavaScript 快速入门 …

7-25学习笔记

一、锁对象 Lock接口 1、创建锁对象 ReentrantLock类 Lock locknew ReentrantLock(true); 默认创建的是非公平锁 在创建锁对象时传入一个true参数 便会创建公平锁 先来后到 是重入锁 排他锁 加锁后不允许其它线程进入 2、加锁、解锁 &#xff08;1&#xff09;loc…

Redis-数据的极速之旅(一)

Redis基础篇 Redis的自我介绍我的核心数据结构1.字符串&#xff08;String&#xff09;2.哈希&#xff08;Hash&#xff09;3.列表&#xff08;List&#xff09;4.集合&#xff08;Set&#xff09;5.有序集合&#xff08;Sorted Set&#xff09; 高性能原理1.Redis为什么快&…

B端系统UI个性化设计:感受定制之美

B端系统UI个性化设计&#xff1a;感受定制之美 引言 艾斯视觉作为ui设计和前端开发从业者&#xff0c;其观点始终认为&#xff1a;在当今竞争激烈的商业环境中&#xff0c;B端&#xff08;Business-to-Business&#xff09;系统的设计不再仅仅是功能性的堆砌&#xff0c;而是…

书生大模型实战营--L1关卡-OpenCompass 评测 InternLM-1.8B 实践

一、使用 OpenCompass 评测 internlm2-chat-1.8b 模型在 MMLU 数据集上的性能 1、使用lmdeploy部署 internlm2-chat-1.8b模型 2、根据OpenCompass官网教程安装并下载数据集 opencompass/README_zh-CN.md at main open-compass/opencompass GitHub 注意&#xff1a; pyhton…

JAVAWeb实战(前端篇)

项目实战一 0.项目结构 1.创建vue3项目&#xff0c;并导入所需的依赖 npm install vue-router npm install axios npm install pinia npm install vue 2.定义路由&#xff0c;axios&#xff0c;pinia相关的对象 文件&#xff08;.js&#xff09; 2.1路由(.js) import {cre…

当全球银行系统“崩溃”时会发生什么?

有句名言&#xff1a;“当美国打喷嚏时&#xff0c;世界就会感冒……”换句话说&#xff0c;当人们对美国及其经济稳定性的信心下降时&#xff0c;其他经济体&#xff08;以及黄金、白银和股票等资产&#xff09;的价值往往会下降。 与任何其他资产类别一样&#xff0c;加密货…

超详细-数据结构-二叉树概念及结构,堆的概念及结构以及堆的代码的c语言实现

本篇博客将详细讲述二叉树的概念&#xff0c;堆的概念及结构以及堆的代码实现&#xff0c;以及二叉树&#xff0c;堆的相关应用。Top K 问题&#xff0c;堆排序的实现以及二叉树链式结构的实现将在之后的博客更新。你可在目录中找到你想重点阅读的内容。堆的完整代码实现在文章…

【秋招笔试题】方程

解析&#xff1a;暴力枚举。建议用Python的eval函数,C手写略麻烦。 #include <iostream> #include <string> #include <vector> #include <sstream>using namespace std;long long stringResult(const string &expr) {vector<string> plusP…

visual studio性能探测器使用案列

visual studio性能探测器使用案列 在visual studio中&#xff0c;我们可以使用自带的工具对项目进行性能探测&#xff0c;具体如下 1.选择性能探查器 Vs2022/Vs2019中打开方式&#xff1a; Vs2017打开方式&#xff1a; 注意最好将解决方案配置为&#xff1a;Release Debu…

昇思25天学习打卡营第22天|CycleGAN图像风格迁移互换

相关知识 CycleGAN 循环生成网络&#xff0c;实现了在没有配对示例的情况下将图像从源域X转换到目标域Y的方法&#xff0c;应用于域迁移&#xff0c;也就是图像风格迁移。上章介绍了可以完成图像翻译任务的Pix2Pix&#xff0c;但是Pix2Pix的数据必须是成对的。CycleGAN中只需…

如何获得某个Window画面所属包名packageName和用户userId

在安卓上获得某个Window画面所属包名packageName和用户userId的方法 1&#xff0c;用到的工具如下&#xff1a; adb androidSDK里的monitor工具 adb shell dumpsys window animator adb shell dumpsys window命令 jdk 1.8已在安卓14模拟器上测试通过。 以AOSP的launcher中的m…

【.NET 6 实战--孢子记账--从单体到微服务】--开发环境设置

在这一小节&#xff0c;我们将设置开发环境。 一、安装SDK 咱们的项目使用的是 .NET6&#xff0c;开发前我们需要从官网上下载.NET6 SDK&#xff08;点击下载&#xff09;&#xff0c;这里要注意的是我们需要下载.NET6 SDK&#xff0c;而不是 .NET6 Runtiem 。SDK 包含 Runti…

C++静态成员变量和静态成员函数

演示代码如下&#xff1a; #include<iostream> using namespace std;class Person { public://静态成员函数 所有对象共享一个函数&#xff0c;且只能调用静态成员变量 ******static void func(){m_A 300;cout << "静态成员函数调用" << endl;}/…

【MySQL进阶之路 | 高级篇】简述Bin Log日志

1. 日志类型 MySQL有不同类型的日志文件&#xff0c;用来存储不同类型的日志&#xff0c;分为二进制日志、错误日志、通用查询日志和慢查询日志&#xff0c;这也是常用的4种。MySQL 8又新增两种支持的日志:中继日志和数据定义语句日志。使用这些日志文件&#xff0c;可以查看M…

openFeign实现服务间调用

以两个模块&#xff08;batch&#xff0c;business&#xff09;为例子&#xff0c;期望实现batch调用business中的hello接口 在主程序batch中引入pom文件 <!--远程调用openfeign--><dependency><groupId>org.springframework.cloud</groupId><arti…

Linux网络工具“瑞士军刀“集合

一、背景 平常我们在进行Linux服务器相关运维的时候&#xff0c;总会遇到一些网络相关的问题。我们可以借助这些小巧、功能强悍的工具帮助我们排查问题、解决问题。 下面结合之前的一些使用经验为大家介绍一下一些经典应用场景下&#xff0c;这个网络命令工具如何使用的。例如怎…

游泳馆押金原路退回源码解析

<dl class"list "><dd class"address-wrapper dd-padding"><div class"address-container"><cyberdiv style"color:#f0efed;font-size:14px;float:right;position:absolute;right:10px;top: 2px;">●●●<…

MYSQL 第三次作业

1、第三次作业 01、SELECT * FROM student; SELECT * FROM score; 02、SELECT * FROM student LIMIT 1, 3; 03、SELECT * FROM student WHERE department IN (计算机系, 英语系); 04、SELECT * FROM student WHERE birth_year > 1998; 05、SELECT department, COUNT(*) as c…