【数据结构】AVL树(平衡二叉搜索树)

文章目录

  • 1.AVL树
    • 1.1 AVL树的概念
    • 1.2 AVL树节点的定义
    • 1.3 AVL树的插入
    • 1.4 AVL树的旋转
      • 1.4.1 左单旋
      • 1.4.2 右单旋
      • 1.4.3 右左双旋
      • 1.4.4 左右双旋
    • 1.5 AVL树的平衡验证
    • 1.6 AVL树的删除
    • 1.7 AVL树的性能

在这里插入图片描述

1.AVL树

在前面,我们已经介绍过了二叉搜索树,也了解到二叉搜索树查找的效率非常的高。但是在数据有序或接近有序时,它就会退化成单边树,那样效率就变得非常低了。所以我们也一直说二叉搜索树的搜索的时间复杂度是O(N)(高度次),并不是O(log2N)。
在这里插入图片描述

因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

1.1 AVL树的概念

由于二叉搜索树可能会退化,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

为什么要求左右子树的高度之差不超过1就可以呢?

对于所有形状的子树来说,如果他有2n-1个节点,那它就可以保持绝对的平衡;如果他有2n (n >= 1)个节点,就无法做到绝对的平衡,最好的结果就是子树高度相差一。

一棵AVL树要么是空树,要么是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

在这里插入图片描述

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果他有n个节点,其高度可保持在log2N,搜索的时间复杂度就是log2N。

1.2 AVL树节点的定义

为了方便确认一棵树是否是AVL树,我们在节点中定义一个平衡因子,通过它来记录每棵树左右子树的高度。

如果右子树比左子树高一层,那平衡因子就是1;如果左右子树一样高,那平衡因子就是0;如果左子树比右子树高一层,那平衡因子就是-1。此时AVL树的性质都没有被打破。

当左子树比右子树高两层,那平衡因子就是-2;或者右子树比左子树高两层,平衡因子就是2,此时AAVL树的性质就被打破了,需要调整。

在调整失衡的AVL树时,我们需要频繁的访问其父节点,因此我们给每个节点定义一个指向父亲的指针

template<class K, class V>
struct AVLTreeNode
{pair<K, V> _kv;  //存放数据AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _prev;  //指向当前节点的父亲int _bf;//平衡因子AVLTreeNode(const pair<K,V>& kv):_kv(kv),_left(nullptr),_right(nullptr),prev(nullptr),_bf(0){}
};

1.3 AVL树的插入

AVL树的插入与普通二叉搜索树的插入基本一致。唯一的区别就是AVL树插入节点后需要判断AVL树是否失衡,存在失衡就需要调整。

我们平衡因子是使用右子树的高度-左子树的高度,因此,如果新节点插入到父节点的右边,那父亲的平衡因子+1;如果新节点插入到父亲节点的左边,那父亲的平衡因子-1。
在这里插入图片描述
对于情况二来说,新节点的插入不会影响其祖先的平衡因子的改变,因为子树的高度没有改变。
对于情况一来说,新节点的插入会影响其祖先的平衡因子的改变,因为子树的高度变高了。

在这里插入图片描述
所以,对于情况一来说,我们新插入节点后,还要观察其祖先的平衡因子是否变化,变化后是否需要调整。

那么下面我们就先将节点插入到树中:

	bool insert(const pair<K, V>& kv){//插入前是空树if (_root == nullptr){//新插入的节点就是根_root = new Node(kv);_root->_prev = nullptr;return true;}else{Node* cur = _root;Node* parent = nullptr;//寻找插入位置while (cur){if (cur->_kv.first < kv.first){parent = cur;//记录父节点,以便后序连接cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;//节点已经存在,插入失败}}//已找到了插入位置cur = new Node(kv);//判断连接在父亲的哪一侧if (parent->_kv.first < kv.first)parent->_right = cur;elseparent->_left = cur;cur->_prev = parent;//指向父亲//判断树是否失衡//...}}

更新父亲/祖先的平衡因子

		//判断树是否失衡while (parent){//更新父亲的平衡因子if (parent->_left == cur)parent->_bf--;elseparent->_bf++;if (parent->_bf == 0)//属于情况二,不影响祖先break;//情况一,影响祖先的平衡因子,需要继续更新else if (parent->_bf == 1 || parent->_bf == -1){cur = parent;parent = cur->_prev;}else if (parent->_bf == 2 || parent->_bf == -2){//旋转处理break;}else{assert(false);//平衡因子异常了}}

1.4 AVL树的旋转

AVL树的旋转分为四种情况:

  • 左单旋
  • 右单旋
  • 左右双旋
  • 右左双旋

下面,我们对这四种情况具体分析

1.4.1 左单旋

新节点插入到较高右子树的右侧- -左单旋
在这里插入图片描述
在旋转过程中,有以下几种情况需要考虑:

  1. 7节点的左孩子可能存在,也可能不存在
  2. 6可能是根节点,也可能是子树
    • 如果是根节点,旋转完成后,根节点就是7
    • 如果是子树,可能是某个节点的左子树,也可能是右子树,需要判断以后连接
void RotateL(Node* parent){Node* subR = parent->_right;//父亲的右孩子Node* subRL = subR->_left;//右孩子的左孩子//升高度,连孙子parent->_right = subRL;if (subRL)subRL->_prev = parent;Node* parentPrev = parent->_prev;//降高度,变父亲subR->_left = parent;parent->_prev = subR;//连接旋转后的子树subR->_prev = parentPrev;if (parentPrev == nullptr){//如果原父亲就是根,旋转后的儿子变根_root = subR;}else{//原父亲是子树,判断儿子连接在哪一边if (parentPrev->_left == parent)parentPrev->_left = subR;elseparentPrev->_right = subR;}//更新平衡因子subR->_bf = 0;parent->_bf = 0;}

1.4.2 右单旋

新节点插入到较高左子树的左侧- - 右旋

在这里插入图片描述
在旋转过程中,有以下几种情况需要考虑:

  1. 5节点的右孩子可能存在,也可能不存在
  2. 6可能是根节点,也可能是子树
    • 如果是根节点,旋转完成后,根节点就是5
    • 如果是子树,可能是某个节点的左子树,也可能是右子树,需要判断以后连接
	void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;//升高度,连孙子parent->_left = subLR;if (subLR)subLR->_prev = parent;Node* parentPrev = parent->_prev;//降高度,变父亲subL->_right = parent;parent->_prev = subL;//新父亲指向前subL->_prev = parentPrev;if (nullptr == parentPrev){//如果原父亲就是根,旋转后的儿子变根_root = subL;}else{//原父亲是子树,判断儿子连接在哪一边if (parentPrev->_left == parent)parentPrev->_left = subL;elseparentPrev->_right = subL;}subL->_bf = 0;parent->_bf = 0;}

1.4.3 右左双旋

新节点插入到较高右子树的左侧- -右左双旋
在这里插入图片描述
所以,为了解决这种情况,我们可以将这种歪脖树先变成一棵单边树,然后再进行单旋即可。
在这里插入图片描述

为了满足所有情况,我们下面使用抽象图再画一遍
在这里插入图片描述

在这里插入图片描述

观察上图我们可以发现,双旋就是一种抛弃自己的孩子,独自登基的感觉,因此对于旋转后平衡因子的改变,取决于新节点插入到哪一边,最后又到哪里去

void RotateRL(Node* parent){//由于单旋会改变节点的位置以及平衡因子,所以提前记录Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);//修改平衡因子if (bf == 0)//subRL插入前是空{parent->_bf = 0;subR->_bf = 0;subRL->_bf = 0;}else if (bf == 1)//subRL之前是一棵树,新节点插入其  右侧{parent->_bf = -1;subR->_bf = 0;subRL->_bf = 0;}else			 //subRL之前是一棵树,新节点插入其  左侧{parent->_bf = 0;subR->_bf = -1;subRL->_bf = 0;}}

在这里插入图片描述

1.4.4 左右双旋

新节点插入到较高左子树的右侧–左右双旋

最简单的情况,2的右子树插入前为空
在这里插入图片描述

抽象图
在这里插入图片描述
跟右左双旋基本一样,这里就不赘述了,咱们直接开旋。
在这里插入图片描述
平衡因子的改变也需要小心

	void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0) // subLR插入前为空{parent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 1) //subLR是一棵树,新节点插入到树的  右侧{parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else              //subLR是一棵树,新节点插入到树的  左侧{parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}}

在这里插入图片描述

下面就是更新平衡因子的整体思路:

			//判断树是否失衡while (parent){//更新父亲的平衡因子if (parent->_left == cur)parent->_bf--;elseparent->_bf++;if (parent->_bf == 0)//属于情况二,不影响祖先break;//情况一,影响祖先的平衡因子,需要继续更新else if (parent->_bf == 1 || parent->_bf == -1){cur = parent;parent = cur->_prev;}else if (parent->_bf == 2 || parent->_bf == -2){//旋转处理//左单旋//    p                     cur//      cur      --->    p      new//         newif (parent->_bf == 2 && cur->_bf == 1)RotateL(parent);//右单旋//			p               cur//		cur      --->   new     p//	newelse if (parent->_bf == -2 && cur->_bf == -1)RotateR(parent);//右左双旋//     p            p                  cur//        cur  -->    cur      -->   p     new//     new                newelse if (parent->_bf == 2 && cur->_bf == -1)RotateRL(parent);//左右双旋//      p             p            cur//  cur      -->    cur      --> new   p     //     new        newelse if (parent->_bf == -2 && cur->_bf == 1)RotateLR(parent);elseassert(false);break;//旋转后,以parent为根的树已经平衡,无需继续向上更新}else{assert(false);//平衡因子异常了}

总结:
假如以Parent为根的子树不平衡,即Parent的平衡因子为2或者-2,分以下情况考虑

  1. Parent的平衡因子为2,说明Parent的右子树高,设Parent的右子树的根为SubR
    • 当SubR的平衡因子为1时,执行左单旋
    • 当SubR的平衡因子为-1时,执行右左双旋
  2. Parent的平衡因子为-2,说明Parent的左子树高,设Parent的左子树的根为SubL
    • 当SubL的平衡因子为-1是,执行右单旋
    • 当SubL的平衡因子为1时,执行左右双旋

旋转完成后,原Parent为根的子树个高度降低,已经平衡,不需要再向上更新。

1.5 AVL树的平衡验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    • 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  2. 验证其为平衡树
    • 每个节点子树高度差的绝对值不能超过1
    • 节点的平衡因子是否计算正确
	int Height(Node* root){if (root == nullptr)return 0;int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}bool _isBalanceTree(){return isBalanceTree(_root);}bool isBalanceTree(Node* root){if (root == nullptr)//空树也是平衡二叉搜索树return true;int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);int gap = rightHeight - leftHeight;  //计算root的平衡因子// 如果计算出的平衡因子与root的平衡因子不相等,或者//root平衡因子的绝对值超过1,则一定不是AVL树if (gap != root->_bf || (gap > 1 || gap < -1)){return false;}return isBalanceTree(root->_left) && isBalanceTree(root->_right);}

在这里插入图片描述

1.6 AVL树的删除

  • 因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除
  • (分析有无左右孩子,若仅有一个孩子,则直接将删除节点连接孩子;若有两个孩子,将删除节点替换为删除节点的左子树的最大或右子树的最小)
  • 然后再更新平衡因子,只不过与插入不同的是,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

1.7 AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log2N。
但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。
因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/48596.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

美摄科技企业级视频拍摄与编辑SDK解决方案

在数字化浪潮汹涌的今天&#xff0c;视频已成为企业传递信息、塑造品牌、连接用户不可或缺的强大媒介。为了帮助企业轻松驾驭这一视觉盛宴的制作过程&#xff0c;美摄科技凭借其在影视级非编技术领域的深厚积累&#xff0c;推出了面向企业的专业视频拍摄与编辑SDK解决方案&…

Mac安装Hoomebrew与升级Python版本

参考 mac 安装HomeBrew(100%成功)_mac安装homebrew-CSDN博客 /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)" 安装了Python 3.x版本&#xff0c;你可以使用以下命令来设置默认的Python版本&#xff1a; # 首先找到新安…

THS配置keepalive(yjm)

启动完THS管理控制台和THS后&#xff0c;登录控制台&#xff0c;进入实例管理》节点管理&#xff0c;可以分别使用界面配置和编辑配置设置长连接。 1、界面配置 点击界面配置》集群设置&#xff0c;启用长连接&#xff0c;设置长连接数、最大请求数和超时时间。 2、编辑配置 …

项目的纪要

ai客服项目中发现的问题: 可以在控制台看到我们存储的cookie: 可以看到是这样的, 但是我们通过getCookie方法专门获取这个字段, 然后在控制台打印后 const userName getTheCookie(SA_USER_NICK_NAME); console.log(userName, userName); 输出结果是: 然后我们尝试通过…

JMeter的使用方法及https的使用方法

软件安装&#xff1a; 参考链接&#xff1a;JMeter 下载安装及环境配置&#xff08;包含jdk1.8安装及配置&#xff09;_jmeter5.2.1需要什么版本的jdk-CSDN博客 前置知识储备&#xff1a; Https请求的案例: JMeter的第一个案例 增加线程数 线程&#xff08;thread&#xff…

Meta 发布 LLAMA 3.1;特斯拉无人出租车推迟至 10 月;谷歌将向 Waymo 再投 50 亿美元

先瞧一下 Chat 和 Agent 的差异。 Chat&#xff08;聊天&#xff09;&#xff1a;纯粹的 Chat&#xff0c;宛如一个主要由“大脑与嘴”组成的智能体&#xff0c;着重于信息处置和语言沟通。诸如 ChatGPT 这般的系统&#xff0c;其能够领会用户的询问&#xff0c;给出有益且连贯…

Linux:基础命令学习

目录 一、ls命令 实例&#xff1a;-l以长格式显示文件和目录信息 实例&#xff1a;-F根据文件类型在列出的文件名称后加一符号 实例&#xff1a; -R 递归显示目录中的所有文件和子目录。 实例&#xff1a; 组合使用 Home目录和工作目录 二、目录修改和查看命令 三、mkd…

《Java初阶数据结构》----4.<线性表---Stack栈和Queue队列>

前言 大家好&#xff0c;我目前在学习java。之前也学了一段时间&#xff0c;但是没有发布博客。时间过的真的很快。我会利用好这个暑假&#xff0c;来复习之前学过的内容&#xff0c;并整理好之前写过的博客进行发布。如果博客中有错误或者没有读懂的地方。热烈欢迎大家在评论区…

DAMA学习笔记(七)-数据集成和互操作

1.引言 数据集成和互操作(DII)描述了数据在不同数据存储、应用程序和组织这三者内部和之间进行移动和整合的相关过程。数据集成是将数据整合成物理的或虚拟的一致格式。数据互操作是多个系统之间进行通信的能力。数据集成和互操作的解决方案提供了大多数组织所依赖的基本数据管…

Unity XR Interaction Toolkit设置或监听手柄按键事件(三)

提示&#xff1a;文章有错误的地方&#xff0c;还望诸位大神不吝指教&#xff01; 文章目录 前言一、XRI Default Input Actions1.导入官方案例2.设置控制器绑定&#xff0c;如手柄、主/辅助按钮、操纵杆等1.要设置控制器绑定&#xff0c;如左右手 手柄、主/辅助按钮、操纵杆等…

[k8s源码]8.deltaFIFO

deltaFIFO DeltaFIFO: 这是一个特殊类型的队列&#xff0c;它结合了FIFO&#xff08;先进先出&#xff09;队列的特性和增量&#xff08;Delta&#xff09;处理的能力。DeltaFIFO 中是按顺序存储的&#xff0c;但它们不必严格按照发生的顺序逐个处理。这种设计提供了处理的灵…

【C++中线程学习】

1、多线程 C11之前没有引入线程的概念&#xff0c;如果想要实现多线程&#xff0c;需要借助操作系统平台提供的API&#xff0c;比如Linux的<pthead.h>&#xff0c;或者windows下的<windows.h>。 C11提供了语言层面上的多线程&#xff0c;包含在头文件<thread.h…

在Windows下部署jar包,关闭命令提示符可以后台运行

前言 大多数情况下&#xff0c;都是选用Linux作为服务器部署服务&#xff0c;在Linux中通过以下命令运行 nohup java -jar xxxxx-1.0-SNAPSHOT.jar 但是有时由于其他原因&#xff0c;或本地测试&#xff0c;或云服务器使用Windows server等等&#xff0c;需要在Windows上面运…

matlab仿真 数字基带传输(下)

&#xff08;内容源自详解MATLAB&#xff0f;SIMULINK 通信系统建模与仿真 刘学勇编著第六章内容&#xff0c;有兴趣的读者请阅读原书&#xff09; clear all Fd1;%符号采样频率 Fs10;%滤波器采样频率 r0.2;%滤波器滚降系数 delay4;%滤波器时延 [num,den]rcosine(Fd,Fs,defau…

Python读取grib数据获取变量推荐姿势

前情提要 最近使用的EC和GFS预报数据给的都是grib2格式的&#xff0c;之前用惯nc格式的&#xff0c;python读取grib2数据的时候还走了些弯路&#xff0c;看到很多博客上给的教程其实不能满足我的需求&#xff0c;现在搞明白了分享一下 pygrib安装 第一个问题就是我电脑上pyg…

通信原理实验六:实验测验

实验六 实验测验 一&#xff1a;测验内容和要求 测试需要完成以下几个步骤&#xff1a; 配置好以下网络图&#xff1b;占总分10%&#xff08;缺少一个扣一分&#xff09;根据下面图配置好对应的IP和网关以及路由等相关配置&#xff0c;保证设备之间连通正常&#xff1b;占总…

领略诗词之妙,发觉生活之美。

文章目录 引言落霞与孤鹜齐飞,秋水共长天一色。野渡无人舟自横。吹灭读书灯,一身都是月。我醉欲眠卿且去,明朝有意抱琴来。赌书消得泼茶香,当时只道是寻常。月上柳梢头,人约黄昏后。最是人间留不住,朱颜辞镜花辞树。山中何事?松花酿酒,春水煎茶。似此星辰非昨夜,为谁风…

用Swagger进行后端接口测试的实战操作

目录 一.什么是Swagger&#xff1f; 二.Swagger的使用操作流程&#xff1a; 1.在pom.xml配置文件导入 Knife4j 的依赖&#xff1a; 2.在config配置类中加入 Knife4j 的相关配置并设置静态资源映射&#xff08;否则接口文档无法访问&#xff09;&#xff1a; 三.Swagger的四个…

redis构建集群时,一直Waiting for the cluster to join

redis构建集群时&#xff0c;一直Waiting for the cluster to join 前置条件参考 前置条件 这是我搭建的集群相关信息&#xff0c;三台虚拟机&#xff0c;分别是一主一从。在将所有虚拟机中redis服务器用到的tcp端口都打开之后&#xff0c;进行构建集群。但是出现上面的情况。 …

【llama3.1】ollama的使用--本地部署使用llama3.1模型

快速入门 安装完成ollama后,在命令行窗口输入 ollama run llama3 上图表示 Ollama 正在下载 llama3 任务所需的资源文件,并显示了当前的下载进度、速度和预计剩余时间。这是 Ollama 在准备运行 llama3 任务之前所需的步骤。 上面的步骤完成后,就可以在本地进行聊天了,…