java HashMap代码解释

SimpleHashMap的部分抄袭解释

package com.zzc.common.utils;import lombok.extern.slf4j.Slf4j;import java.io.IOException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.Set;
import java.util.Spliterator;
import java.util.function.Consumer;@Slf4j
public class SimpleHashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>, Cloneable, Serializable {private static final long serialVersionUID = 362498820763181265L;/*** 默认初始容量为 16,必须是2的幂次方*/static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16/*** 最大容量,当任一带参数的构造函数参数指定了更高的值时使用,区间 2的幂次方 <= 2的30次方*/static final int MAXIMUM_CAPACITY = 1 << 30;/*** 在构造函数中未指定时使用的负载因子* <p>* HashMap的负载因子默认设置为0.75是为了在保证空间利用率的同时,尽可能减少‌哈希冲突的发生,从而提高HashMap的性能。这个设置是基于以下考虑:* 1:平衡性能和空间利用率:设置负载因子为0.75可以在哈希表填充到一定程度时触发扩容操作,避免链表过长导致的查询效率下降,同时减少因频繁扩容带来的性能损耗。* 2:理论依据:这个值也基于‌泊松分布的理论计算得出,经过实验验证,0.75的负载因子在大多数情况下能提供较好的性能表现。* 3:实践应用:在实际应用中,0.75的负载因子能够有效地减少哈希冲突,同时保持较高的空间利用率,避免浪费存储空间。* 综上所述,0.75的负载因子是经过理论和实验验证的一个优化选择,旨在平衡HashMap的性能和空间效率。*/static final float DEFAULT_LOAD_FACTOR = 0.75f;/*** 使用树数据结构存储,而不是数组作为存储的数据量大小* 单个node节点下的子节点数量大于8时,就会由链表转为红黑树* 该值必须大于2并且至少应该为8,*/static final int TREEIFY_THRESHOLD = 8;/*** 单个node节点下的子节点数量小于6时,则会由红黑树结构转换为链表结构*/static final int UNTREEIFY_THRESHOLD = 6;/*** 将列表树化的最小容量* (如果容器中节点太多,则调整容器的大小)* 每次扩容,应该至少4*TREEIFY_THRESHOLD的大小,以避免调整大小和树化阈值之间的冲突** 当链表长度大于等于TREEIFY_THRESHOLD - 1,并且数组长度大于等于MIN_TREEIFY_CAPACITY是就会转红黑树*/static final int MIN_TREEIFY_CAPACITY = 64;transient Set<K>        keySet;transient Collection<V> values;/*** 该表在首次使用时进行初始化,并根据需要调整大小。当分配时,长度总是2的幂。* (在某些操作中,我们还允许长度为零,以允许目前不需要的引导机制。)*/transient Node<K, V>[] table;/*** 保存缓存的entrySet()。请注意,AbstractMap字段用于keySet()和values()。*/transient Set<Map.Entry<K, V>> entrySet;/*** 节点数量*/transient int size;/*** 用于快速失败机制* 该参数表示hashmap数据修改的次数或者其他内部修改次数(比如:rehash)* HashMap 的 Fail-Fast 机制是 Java 集合框架中的一种错误检测机制。* 当多个线程对某个集合进行结构上的改变操作时,若有其他线程在该集合上进行遍历操作,则可能会抛出 ConcurrentModificationException 异常。* Fail-Fast 机制并不保证多线程环境下的正确性,它只是尽可能地检测出并发修改的问题。*/transient int modCount;/*** 扩容阀值* 下一个要调整大小的大小值(容量*负载系数)。*/// (The javadoc description is true upon serialization.// Additionally, if the table array has not been allocated, this// field holds the initial array capacity, or zero signifying// DEFAULT_INITIAL_CAPACITY.)int threshold;/*** 哈希表的负载系数*/final float loadFactor;//--------------/*** 初始化hashMap** @param initialCapacity 初始化大小* @param loadFactor*/public SimpleHashMap(int initialCapacity, float loadFactor) {if (initialCapacity < 0)throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);if (initialCapacity > MAXIMUM_CAPACITY)initialCapacity = MAXIMUM_CAPACITY;if (loadFactor <= 0 || Float.isNaN(loadFactor))throw new IllegalArgumentException("Illegal load factor: " + loadFactor);this.loadFactor = loadFactor;this.threshold = tableSizeFor(initialCapacity);//处理为2的次方大小}public SimpleHashMap(int initialCapacity) {this(initialCapacity, DEFAULT_LOAD_FACTOR);}public SimpleHashMap() {this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted}/*** @param m*/public SimpleHashMap(Map<? extends K, ? extends V> m) {this.loadFactor = DEFAULT_LOAD_FACTOR;//使用默认负载因子putMapEntries(m, false);}/*** @param map* @param evict 最初构建此映射时为false,否则为true(在NodeInsertion后中继到方法)*/final void putMapEntries(Map<? extends K, ? extends V> map, boolean evict) {int s = map.size();if (s > 0) {if (table == null) { // pre-size 如果前置节点为空,则代表容器需要float ft = ((float) s / loadFactor) + 1.0F;//int t = ((ft < (float) MAXIMUM_CAPACITY) ? (int) ft : MAXIMUM_CAPACITY);//if (t > threshold) // 容器大小threshold = tableSizeFor(t);//需要调整容器大小的阀值} else {// Because of linked-list bucket constraints, we cannot// expand all at once, but can reduce total resize// effort by repeated doubling now vs laterwhile (s > threshold && table.length < MAXIMUM_CAPACITY)resize();}for (Map.Entry<? extends K, ? extends V> e : map.entrySet()) {K key = e.getKey();V value = e.getValue();putVal(hash(key), key, value, false, evict);}}}/*** @return the number of key-value mappings in this map*/public int size() {return size;}/****/public boolean isEmpty() {return size == 0;}/*** 返回指定键映射到的值,如果map的key为null或者vall为null则返回null** @see #put(Object, Object)*/public V get(Object key) {Node<K, V> e;return (e = getNode(key)) == null ? null : e.value;}/*** 判断key是否存在** @param key key whose presence in this map is to be tested* @return*/public boolean containsKey(Object key) {return getNode(key) != null;}public V put(K key, V value) {return putVal(hash(key), key, value, false, true);}/*** 计算key.hashCode()并将哈希的高位扩展(XORs)到低位。* 由于该表使用了两个掩码的能力,因此仅在当前掩码以上的位上变化的哈希集总是会发生冲突。(已知的例子包括在小表中保存连续整数的浮点键集。)* 因此,我们应用了一种变换,将高位的影响向下分散。比特扩展的速度、效用和质量之间存在权衡。* 由于许多常见的哈希集已经合理分布(因此不会从扩展中受益),并且由于我们使用树来处理容器中的大量冲突,* 我们只需以最便宜的方式XOR一些移位的比特,以减少系统损失,并考虑由于表边界而永远不会在索引计算中使用的最高比特的影响。** 首先获取对象的hashCode()值,然后将hashCode值右移16位,然后将右移后的值与原来的hashCode做异或运算,返回结果。(其中h>>>16,在JDK1.8中,优化了高位运算的算法,使用了零扩展,无论正数还是负数,都在高位插入0)。* 在 putVal 源码中,我们通过(n-1)&hash获取该对象的键在hashmap中的位置。其中n表示的是hash桶数组的长度,并且该长度为2的n次方,这样(n-1)&hash就等价于hash%n。因为&运算的效率高于%运算。* @param key* @return*/static final int hash(Object key) {int h;return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);//将高16位移到低16位,高位补0}/*** TODO* 将key传进来判断是否实现了Comparable接口* @param x* @return*/static Class<?> comparableClassFor(Object x) {if (x instanceof Comparable) {//判断x是否实现了Comparable接口Class<?> c;Type[] ts, as;ParameterizedType p;if ((c = x.getClass()) == String.class) // 校验x是否为String类型return c;if ((ts = c.getGenericInterfaces()) != null) {//存在实现的接口for (Type t : ts) {//遍历x实现的所有接口if ((t instanceof ParameterizedType) &&((p = (ParameterizedType) t).getRawType() ==Comparable.class) &&(as = p.getActualTypeArguments()) != null &&as.length == 1 && as[0] == c) // 如果x实现了Comparable接口,则返回x的Classreturn c;}}}return null;}/** Returns k.compareTo(x) if x matches kc (k's screened comparable* class), else 0.*/@SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparablestatic int compareComparables(Class<?> kc, Object k, Object x) {return (x == null || x.getClass() != kc ? 0 :((Comparable) k).compareTo(x));}/*** 返回给定目标容量的2次幂* 为什么要2的次方:* 因为获取 key 在数组中对应的下标是通过 key 的哈希值与 数组长度-1 进行与运算,如:i = (n - 1) & hash* 1、n 为 2 的整数次幂,这样 n-1 后之前为 1 的位后面全是 1,这样就能保证 (n-1) & hash 后相应的位数既可能是 0 又可能是 1,这取决于 hash 的值,这样能保证散列的均匀,同时与运算效率高* 2、如果 n 不是 2 的整数次幂,会造成更多的 hash 冲突** @param cap* @return*/static final int tableSizeFor(int cap) {// 首先在jvm中一个int类型的数据占4个字节,共32位,其实就相当于一个长度为32的数组。// 那我们要计算高位连续0的个数,就是从左边第一个位开始累加0的个数,直到遇到一个非零值// 例:cap=3;// 过程:2的二进制 0000 0000 0000 0000 0000 0000 0000 0010, numberOfLeadingZeros 之后等于30位,-1的二进制 1000 0000 0000 0000 0000 0000 0000 0000int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);//cap - 1 应该时避免int最大值,2^32-1 这个原因吧;-1的二进制友移30位 0000 0000 0000 0000 0000 0000 0000 0011 得到该值return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;//最终结果 2^2=4}/*** 获取节点* @param key* @return*/final Node<K, V> getNode(Object key) {Node<K, V>[] tab;Node<K, V> first, e;int n, hash;K k;// 对table进行效验 :table不为空 && table长度大于0 &&// table索引位置(使用table.length-1 和hash值进行位与计算)if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & (hash = hash(key))]) != null) {//如果表不等于null并且表大小大于0,并且第一个节点的if (first.hash == hash && // always check first node((k = first.key) == key || (key != null && key.equals(k))))//检查first节点的hash值和key是否入参的一样,如果一样则first即为目标节点,直接返回first节点return first;if ((e = first.next) != null) {//如果first不是目标节点,并且first的next节点e不为空则继续遍历if (first instanceof TreeNode)//如果是红黑树节点,则调用红黑树的查找目标节点方法getTreeNodereturn ((TreeNode<K, V>) first).getTreeNode(hash, key);do {if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))//执行链表节点的查找,向下遍历链表, 直至找到节点的key和入参的key相等时,返回该节点return e;} while ((e = e.next) != null);}}return null;}/*** 数组+链表+红黑树* @param hash* @param key* @param value* @param onlyIfAbsent* @param evict* @return*/final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {Node<K, V>[] tab;Node<K, V> p;int n, i;if ((tab = table) == null || (n = tab.length) == 0)//校验table是否为空或者length等于0,如果是则调用resize方法进行初始化tablen = (tab = resize()).length;//resize()方法 扩容之后返回一个新的Node[]数组,n为数组tab的长度if ((p = tab[i = (n - 1) & hash]) == null)//通过hash值计算索引位置,将该索引位置的头节点赋值给p,如果p为空则直接在该索引位置新增一个节点即可tab[i] = newNode(hash, key, value, null);//newNode()方法 链表的头结点else {//否则进行hash key 的对比Node<K, V> e;K k;if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))//table表该索引位置不为空,则进行查找 p是头结点e = p;else if (p instanceof TreeNode)//判断p节点是否为TreeNode, 如果是则调用红黑树的putTreeVal方法查找目标节点e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);//将键值对存入红黑树中 putTreeVal()else {//走到这代表p节点为普通链表节点,则调用普通的链表方法进行查找,使用binCount统计链表的节点数for (int binCount = 0; ; ++binCount) {if ((e = p.next) == null) {//当遍历到链表为空的时候p.next = newNode(hash, key, value, null);//hashmap中在链表的末尾创建新的节点,linkedhashMap重写了newNode节点 转为双向链表if (binCount >= TREEIFY_THRESHOLD - 1) // 校验节点数是否超过8个,如果超过则调用treeifyBin方法将链表节点转为红黑树节点,,减一是因为循环是从p节点的下一个节点开始的treeifyBin(tab, hash);//链表转红黑树treeifyBin()break;}if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))//如果e节点存在hash值和key值都与传入的相同,则e节点即为目标节点,跳出循环break;p = e;//将p指向下一个节点}}if (e != null) { // 如果e节点不为空,则代表目标节点存在,使用传入的value覆盖该节点的value,并返回oldValueV oldValue = e.value;if (!onlyIfAbsent || oldValue == null)e.value = value;afterNodeAccess(e);return oldValue;}}++modCount;if (++size > threshold)//如果插入节点后节点数超过阈值,则调用resize方法进行扩容resize();//扩容afterNodeInsertion(evict);//用于LinkedHashMapreturn null;}/*** 初始化或加倍表的大小。* 如果为空,则按照字段阈值中持有的初始容量目标分配。否则,因为我们使用的是2的幂展开,所以每个容器中的元素必须保持在相同的索引,或者在新表中以2的偏移量幂移动。* @return*/final Node<K, V>[] resize() {Node<K, V>[] oldTab = table;//定义old变量,保留old变量int oldCap = (oldTab == null) ? 0 : oldTab.length;//当前old节点的的hash表节点数量int oldThr = threshold;//old负载因子,扩容阀值int newCap, newThr = 0;//初始化新的数组大小和新的负载因子if (oldCap > 0) {//当old hash表节点不为空,即数量大于0if (oldCap >= MAXIMUM_CAPACITY) {//当前的hash表大与最大容量限制,则不进行扩容threshold = Integer.MAX_VALUE;//扩展阀值设置为int最大值return oldTab;//不扩容,返回旧的hash表} else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)//如果扩容2倍并且小于最大容量,并且大于初始化容量newThr = oldThr << 1; // (新容量*负载因子)扩展阀值扩大2倍} else if (oldThr > 0) // hash为空,扩容阀值大与0,则扩容后hash表大小等与该阀值newCap = oldThr;else {//当hash为空,则使用默认值newCap = DEFAULT_INITIAL_CAPACITY;//初始化hash表大小为 16newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//初始化扩容阀值为12}if (newThr == 0) {//hash为空,扩容阀值大与0,赋值完newCap后,重新计算扩容阀值float ft = (float) newCap * loadFactor;newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ?(int) ft : Integer.MAX_VALUE);}threshold = newThr;//设置全局变量 扩容阀值//初始化新的hash表,若旧的hash表存在数据,则进行迁移@SuppressWarnings({"rawtypes", "unchecked"})Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];table = newTab;if (oldTab != null) {for (int j = 0; j < oldCap; ++j) {Node<K, V> e;if ((e = oldTab[j]) != null) {//如果当前节点不为空oldTab[j] = null;if (e.next == null)//如果当前节点的next指向下一个节点为空,则同一层级的数组newTab[e.hash & (newCap - 1)] = e;else if (e instanceof TreeNode)//如果当前节点的next指向下一个节点不为空,节点为树节点((TreeNode<K, V>) e).split(this, newTab, j, oldCap);else { // 如果是普通的链表节点,则进行普通的重hash分布Node<K, V> loHead = null, loTail = null;Node<K, V> hiHead = null, hiTail = null;Node<K, V> next;do {//完成遍历后,可能会得到两条链表next = e.next;if ((e.hash & oldCap) == 0) {//如果e的hash值与旧表的容量进行与运算为0,则扩容后的索引位置跟旧表的索引位置一样if (loTail == null)//如果loTail为空, 代表该节点为第一个节点loHead = e;//则将loHead赋值为第一个节点else//否则将节点添加在loTail后面loTail.next = e;//loTail = e;//并将loTail赋值为新增的节点} else {//如果e的hash值与旧表的容量进行与运算为非0,则扩容后的索引位置为:旧表的索引位置+oldCapif (hiTail == null)//如果hiTail为空, 代表该节点为第一个节点hiHead = e;//则将hiHead赋值为第一个节点else//否则将节点添加在hiTail后面hiTail.next = e;hiTail = e;//并将hiTail赋值为新增的节点}} while ((e = next) != null);if (loTail != null) {//如果loTail不为空(说明旧表的数据有分布到新表上“原索引位置”的节点),则将最后一个节点的next设为空,并将新表上索引位置为“原索引位置”的节点设置为对应的头节点loTail.next = null;newTab[j] = loHead;}if (hiTail != null) {//如果hiTail不为空(说明旧表的数据有分布到新表上“原索引+oldCap位置”的节点),则将最后一个节点的next设为空,并将新表上索引位置为“原索引+oldCap”的节点设置为对应的头节点hiTail.next = null;newTab[j + oldCap] = hiHead;}}}}}return newTab;//返回新的table}/*** 将链表转为红黑树节点* @param tab* @param hash*/final void treeifyBin(Node<K, V>[] tab, int hash) {int n, index;Node<K, V> e;//如果table为空或者table的长度小于64, 调用resize方法进行扩容if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)resize();else if ((e = tab[index = (n - 1) & hash]) != null) {//根据hash值计算索引值,将该索引位置的节点赋值给e,从e开始遍历该索引位置的链表TreeNode<K, V> hd = null, tl = null;do {//将链表节点转红黑树节点TreeNode<K, V> p = replacementTreeNode(e, null);//将Node节点转为TreeNode节点if (tl == null)//如果是第一次遍历,将头节点赋值给hd,tl为空代表为第一次循环hd = p;else {//如果不是第一次遍历,则处理当前节点的prev属性和上一个节点的next属性p.prev = tl;tl.next = p;}tl = p;//将p节点赋值给tl,用于在下一次循环中作为上一个节点进行一些链表的关联操作(p.prev = tl 和 tl.next = p)} while ((e = e.next) != null);if ((tab[index] = hd) != null)//将table该索引位置赋值为新转的TreeNode的头节点,如果该节点不为空,则以以头节点(hd)为根节点, 构建红黑树treeify()hd.treeify(tab);//treeify()使用数组tab[Node<key,value>] 构建红黑树}}public void putAll(Map<? extends K, ? extends V> m) {putMapEntries(m, true);}/*** Removes the mapping for the specified key from this map if present.** @param key key whose mapping is to be removed from the map* @return the previous value associated with {@code key}, or* {@code null} if there was no mapping for {@code key}.* (A {@code null} return can also indicate that the map* previously associated {@code null} with {@code key}.)*/public V remove(Object key) {Node<K, V> e;return (e = removeNode(hash(key), key, null, false, true)) == null ?null : e.value;}/*** 删除节点* @param hash* @param key* @param value* @param matchValue* @param movable* @return*/final Node<K, V> removeNode(int hash, Object key, Object value,boolean matchValue, boolean movable) {Node<K, V>[] tab;Node<K, V> p;int n, index;if ((tab = table) != null && (n = tab.length) > 0 &&(p = tab[index = (n - 1) & hash]) != null) {//如果table不为空并且根据hash值计算出来的索引位置不为空, 将该位置的节点赋值给pNode<K, V> node = null, e;K k;V v;if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))//如果p的hash值和key都与入参的相同, 则p即为目标节点, 赋值给nodenode = p;//else if ((e = p.next) != null) {//否则将p.next赋值给e,向下遍历节点if (p instanceof TreeNode)//如果p是TreeNode则调用红黑树的方法查找节点node = ((TreeNode<K, V>) p).getTreeNode(hash, key);else {//否则,进行普通链表节点的查找do {if (e.hash == hash &&((k = e.key) == key ||(key != null && key.equals(k)))) {//当节点的hash值和key与传入的相同,则该节点即为目标节点node = e;break;}p = e;} while ((e = e.next) != null);}}//对节点下的链表或者树节点中的节点进行移除if (node != null && (!matchValue || (v = node.value) == value ||(value != null && value.equals(v)))) {//如果node不为空(即根据传入key和hash值查找到目标节点),则进行移除操作if (node instanceof TreeNode)// 如果是TreeNode则调用红黑树的移除方法((TreeNode<K, V>) node).removeTreeNode(this, tab, movable);else if (node == p)//如果node是该索引位置的头节点则直接将该索引位置的值赋值为node的next节点,“node == p”只会出现在node是头节点的时候,如果node不是头节点,则node为p的next节点tab[index] = node.next;else//否则将node的上一个节点的next属性设置为node的next节点,即将node节点移除, 将node的上下节点进行关联(链表的移除)p.next = node.next;++modCount;--size;afterNodeRemoval(node);return node;}}return null;}/*** Removes all of the mappings from this map.* The map will be empty after this call returns.*/public void clear() {Node<K, V>[] tab;modCount++;if ((tab = table) != null && size > 0) {size = 0;for (int i = 0; i < tab.length; ++i)tab[i] = null;}}/*** Returns {@code true} if this map maps one or more keys to the* specified value.** @param value value whose presence in this map is to be tested* @return {@code true} if this map maps one or more keys to the* specified value*/public boolean containsValue(Object value) {Node<K, V>[] tab;V v;if ((tab = table) != null && size > 0) {for (Node<K, V> e : tab) {for (; e != null; e = e.next) {if ((v = e.value) == value ||(value != null && value.equals(v)))return true;}}}return false;}/*** 覆写抽象的keySet* @return*/@Overridepublic Set<K> keySet() {Set<K> ks = keySet;if (ks == null) {ks = new KeySet();keySet = ks;}return ks;}@Overridepublic Collection<V> values() {Collection<V> vs = values;if (vs == null) {vs = new Values();values = vs;}return vs;}/* ------------------------------------------------------------ */// LinkedHashMap support/** The following package-protected methods are designed to be* overridden by LinkedHashMap, but not by any other subclass.* Nearly all other internal methods are also package-protected* but are declared final, so can be used by LinkedHashMap, view* classes, and HashSet.*/// Create a regular (non-tree) nodeNode<K, V> newNode(int hash, K key, V value, Node<K, V> next) {return new Node<>(hash, key, value, next);}// For conversion from TreeNodes to plain nodesNode<K, V> replacementNode(Node<K, V> p, Node<K, V> next) {return new Node<>(p.hash, p.key, p.value, next);}// Create a tree bin nodeTreeNode<K, V> newTreeNode(int hash, K key, V value, Node<K, V> next) {return new TreeNode<>(hash, key, value, next);}// For treeifyBinTreeNode<K, V> replacementTreeNode(Node<K, V> p, Node<K, V> next) {return new TreeNode<>(p.hash, p.key, p.value, next);}/*** Reset to initial default state.  Called by clone and readObject.*/void reinitialize() {table = null;entrySet = null;keySet = null;values = null;modCount = 0;threshold = 0;size = 0;}// Callbacks to allow LinkedHashMap post-actionsvoid afterNodeAccess(Node<K, V> p) {}void afterNodeInsertion(boolean evict) {}void afterNodeRemoval(Node<K, V> p) {}// Called only from writeObject, to ensure compatible ordering.void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {Node<K, V>[] tab;if (size > 0 && (tab = table) != null) {for (Node<K, V> e : tab) {for (; e != null; e = e.next) {s.writeObject(e.key);s.writeObject(e.value);}}}}@Overridepublic Set<Map.Entry<K, V>> entrySet() {Set<Map.Entry<K, V>> es;return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;}final class Values extends AbstractCollection<V> {public final int size()                 { return size; }public final void clear()               { this.clear(); }public final Iterator<V> iterator()     { return new ValueIterator(); }public final boolean contains(Object o) { return containsValue(o); }public final Spliterator<V> spliterator() {return new ValueSpliterator<>(SimpleHashMap.this, 0, -1, 0, 0);}public Object[] toArray() {return valuesToArray(new Object[size]);}public <T> T[] toArray(T[] a) {return valuesToArray(prepareArray(a));}public final void forEach(Consumer<? super V> action) {Node<K,V>[] tab;if (action == null)throw new NullPointerException();if (size > 0 && (tab = table) != null) {int mc = modCount;for (Node<K,V> e : tab) {for (; e != null; e = e.next)action.accept(e.value);}if (modCount != mc)throw new ConcurrentModificationException();}}}static final class ValueSpliterator<K,V>extends HashMapSpliterator<K,V>implements Spliterator<V> {ValueSpliterator(SimpleHashMap<K,V> m, int origin, int fence, int est,int expectedModCount) {super(m, origin, fence, est, expectedModCount);}public ValueSpliterator<K,V> trySplit() {int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;return (lo >= mid || current != null) ? null :new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,expectedModCount);}public void forEachRemaining(Consumer<? super V> action) {int i, hi, mc;if (action == null)throw new NullPointerException();SimpleHashMap<K,V> m = map;Node<K,V>[] tab = m.table;if ((hi = fence) < 0) {mc = expectedModCount = m.modCount;hi = fence = (tab == null) ? 0 : tab.length;}elsemc = expectedModCount;if (tab != null && tab.length >= hi &&(i = index) >= 0 && (i < (index = hi) || current != null)) {Node<K,V> p = current;current = null;do {if (p == null)p = tab[i++];else {action.accept(p.value);p = p.next;}} while (p != null || i < hi);if (m.modCount != mc)throw new ConcurrentModificationException();}}public boolean tryAdvance(Consumer<? super V> action) {int hi;if (action == null)throw new NullPointerException();Node<K,V>[] tab = map.table;if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {while (current != null || index < hi) {if (current == null)current = tab[index++];else {V v = current.value;current = current.next;action.accept(v);if (map.modCount != expectedModCount)throw new ConcurrentModificationException();return true;}}}return false;}public int characteristics() {return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);}}final class KeySet extends AbstractSet<K> {public final int size() {return size;}public final void clear() {SimpleHashMap.this.clear();}public final Iterator<K> iterator() {return new KeyIterator();}public final boolean contains(Object o) {return containsKey(o);}public final boolean remove(Object key) {return removeNode(hash(key), key, null, false, true) != null;}public final Spliterator<K> spliterator() {return new KeySpliterator<>(SimpleHashMap.this, 0, -1, 0, 0);}public Object[] toArray() {return keysToArray(new Object[size]);}public <T> T[] toArray(T[] a) {return keysToArray(prepareArray(a));}public final void forEach(Consumer<? super K> action) {Node<K, V>[] tab;if (action == null)throw new NullPointerException();if (size > 0 && (tab = table) != null) {int mc = modCount;for (Node<K, V> e : tab) {for (; e != null; e = e.next)action.accept(e.key);}if (modCount != mc)throw new ConcurrentModificationException();}}}@SuppressWarnings("unchecked")final <T> T[] prepareArray(T[] a) {int size = this.size;if (a.length < size) {return (T[]) java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), size);}if (a.length > size) {a[size] = null;}return a;}/*** Fills an array with this map keys and returns it. This method assumes* that input array is big enough to fit all the keys. Use* {@link #prepareArray(Object[])} to ensure this.** @param a   an array to fill* @param <T> type of array elements* @return supplied array*/<T> T[] keysToArray(T[] a) {Object[] r = a;Node<K, V>[] tab;int idx = 0;if (size > 0 && (tab = table) != null) {for (Node<K, V> e : tab) {for (; e != null; e = e.next) {r[idx++] = e.key;}}}return a;}/*** Fills an array with this map values and returns it. This method assumes* that input array is big enough to fit all the values. Use* {@link #prepareArray(Object[])} to ensure this.** @param a   an array to fill* @param <T> type of array elements* @return supplied array*/<T> T[] valuesToArray(T[] a) {Object[] r = a;Node<K, V>[] tab;int idx = 0;if (size > 0 && (tab = table) != null) {for (Node<K, V> e : tab) {for (; e != null; e = e.next) {r[idx++] = e.value;}}}return a;}static final class KeySpliterator<K, V>extends HashMapSpliterator<K, V>implements Spliterator<K> {KeySpliterator(SimpleHashMap<K, V> m, int origin, int fence, int est,int expectedModCount) {super(m, origin, fence, est, expectedModCount);}public KeySpliterator<K, V> trySplit() {int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;return (lo >= mid || current != null) ? null :new KeySpliterator<>(map, lo, index = mid, est >>>= 1,expectedModCount);}public void forEachRemaining(Consumer<? super K> action) {int i, hi, mc;if (action == null)throw new NullPointerException();SimpleHashMap<K, V> m = map;Node<K, V>[] tab = m.table;if ((hi = fence) < 0) {mc = expectedModCount = m.modCount;hi = fence = (tab == null) ? 0 : tab.length;} elsemc = expectedModCount;if (tab != null && tab.length >= hi &&(i = index) >= 0 && (i < (index = hi) || current != null)) {Node<K, V> p = current;current = null;do {if (p == null)p = tab[i++];else {action.accept(p.key);p = p.next;}} while (p != null || i < hi);if (m.modCount != mc)throw new ConcurrentModificationException();}}public boolean tryAdvance(Consumer<? super K> action) {int hi;if (action == null)throw new NullPointerException();Node<K, V>[] tab = map.table;if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {while (current != null || index < hi) {if (current == null)current = tab[index++];else {K k = current.key;current = current.next;action.accept(k);if (map.modCount != expectedModCount)throw new ConcurrentModificationException();return true;}}}return false;}public int characteristics() {return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |Spliterator.DISTINCT;}}/*** node节点,作为基本hash节点** @param <K>* @param <V>*/static class Node<K, V> implements Map.Entry<K, V> {final int hash;final K key;V value;Node<K, V> next;Node(int hash, K key, V value, Node<K, V> next) {this.hash = hash;this.key = key;this.value = value;this.next = next;}public final K getKey() {return key;}public final V getValue() {return value;}public final String toString() {return key + "=" + value;}public final int hashCode() {return Objects.hashCode(key) ^ Objects.hashCode(value);}public final V setValue(V newValue) {V oldValue = value;value = newValue;return oldValue;}public final boolean equals(Object o) {if (o == this)return true;// Map.Entry<?, ?> e 写法jdk8不支持,jdk17支持/*return o instanceof Map.Entry<?, ?> e&& Objects.equals(key, e.getKey())&& Objects.equals(value, e.getValue());*/if (o instanceof Map.Entry) {Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;if (Objects.equals(key, e.getKey()) &&Objects.equals(value, e.getValue()))return true;}return false;}}static class Entry<K, V> extends Node<K, V> {Entry<K, V> before, after;Entry(int hash, K key, V value, Node<K, V> next) {super(hash, key, value, next);}}static final class EntrySpliterator<K, V>extends HashMapSpliterator<K, V>implements Spliterator<Map.Entry<K, V>> {EntrySpliterator(SimpleHashMap<K, V> m, int origin, int fence, int est,int expectedModCount) {super(m, origin, fence, est, expectedModCount);}public EntrySpliterator<K, V> trySplit() {int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;return (lo >= mid || current != null) ? null :new SimpleHashMap.EntrySpliterator<>(map, lo, index = mid, est >>>= 1,expectedModCount);}public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {int i, hi, mc;if (action == null)throw new NullPointerException();SimpleHashMap<K, V> m = map;Node<K, V>[] tab = m.table;if ((hi = fence) < 0) {mc = expectedModCount = m.modCount;hi = fence = (tab == null) ? 0 : tab.length;} elsemc = expectedModCount;if (tab != null && tab.length >= hi &&(i = index) >= 0 && (i < (index = hi) || current != null)) {Node<K, V> p = current;current = null;do {if (p == null)p = tab[i++];else {action.accept(p);p = p.next;}} while (p != null || i < hi);if (m.modCount != mc)throw new ConcurrentModificationException();}}public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action) {int hi;if (action == null)throw new NullPointerException();Node<K, V>[] tab = map.table;if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {while (current != null || index < hi) {if (current == null)current = tab[index++];else {Node<K, V> e = current;current = current.next;action.accept(e);if (map.modCount != expectedModCount)throw new ConcurrentModificationException();return true;}}}return false;}public int characteristics() {return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |Spliterator.DISTINCT;}}static class HashMapSpliterator<K, V> {final SimpleHashMap<K, V> map;Node<K, V> current;          // current nodeint index;                  // current index, modified on advance/splitint fence;                  // one past last indexint est;                    // size estimateint expectedModCount;       // for comodification checksHashMapSpliterator(SimpleHashMap<K, V> m, int origin,int fence, int est,int expectedModCount) {this.map = m;this.index = origin;this.fence = fence;this.est = est;this.expectedModCount = expectedModCount;}final int getFence() { // initialize fence and size on first useint hi;if ((hi = fence) < 0) {SimpleHashMap<K, V> m = map;est = m.size;expectedModCount = m.modCount;Node<K, V>[] tab = m.table;hi = fence = (tab == null) ? 0 : tab.length;}return hi;}public final long estimateSize() {getFence(); // force initreturn (long) est;}}final class EntrySet extends AbstractSet<Map.Entry<K, V>> {public final int size() {return size;}public final void clear() {this.clear();}public final Iterator<Map.Entry<K, V>> iterator() {return new EntryIterator();}public final boolean contains(Object o) {if (!(o instanceof Map.Entry<?, ?>)) {return false;}Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;Object key = e.getKey();Node<K, V> candidate = getNode(key);return candidate != null && candidate.equals(e);}public final boolean remove(Object o) {if (o instanceof Map.Entry<?, ?>) {Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;Object key = e.getKey();Object value = e.getValue();return removeNode(hash(key), key, value, true, true) != null;}return false;}public final Spliterator<Map.Entry<K, V>> spliterator() {return new EntrySpliterator<>(SimpleHashMap.this, 0, -1, 0, 0);}public final void forEach(Consumer<? super Map.Entry<K, V>> action) {Node<K, V>[] tab;if (action == null)throw new NullPointerException();if (size > 0 && (tab = table) != null) {int mc = modCount;for (Node<K, V> e : tab) {for (; e != null; e = e.next)action.accept(e);}if (modCount != mc)throw new ConcurrentModificationException();}}}abstract class HashIterator {Node<K, V> next;        // next entry to returnNode<K, V> current;     // current entryint expectedModCount;  // for fast-failint index;             // current slotHashIterator() {expectedModCount = modCount;Node<K, V>[] t = table;current = next = null;index = 0;if (t != null && size > 0) { // advance to first entrydo {} while (index < t.length && (next = t[index++]) == null);}}public final boolean hasNext() {return next != null;}final Node<K, V> nextNode() {Node<K, V>[] t;Node<K, V> e = next;if (modCount != expectedModCount)throw new ConcurrentModificationException();if (e == null)throw new NoSuchElementException();if ((next = (current = e).next) == null && (t = table) != null) {do {} while (index < t.length && (next = t[index++]) == null);}return e;}public final void remove() {Node<K, V> p = current;if (p == null)throw new IllegalStateException();if (modCount != expectedModCount)throw new ConcurrentModificationException();current = null;removeNode(p.hash, p.key, null, false, false);expectedModCount = modCount;}}final class KeyIterator extends HashIterator implements Iterator<K> {public final K next() {return nextNode().key;}}final class ValueIterator extends HashIterator implements Iterator<V> {public final V next() {return nextNode().value;}}final class EntryIterator extends HashIterator implements Iterator<Map.Entry<K, V>> {public final Map.Entry<K, V> next() {return nextNode();}}/*** 红黑树** @param <K>* @param <V>*/static final class TreeNode<K, V> extends Entry<K, V> {TreeNode<K, V> parent;  // red-black tree linksTreeNode<K, V> left;TreeNode<K, V> right;TreeNode<K, V> prev;    // needed to unlink next upon deletionboolean red;TreeNode(int hash, K key, V val, Node<K, V> next) {super(hash, key, val, next);}/*** Returns root of tree containing this node.* 返回红黑树的root节点*/final TreeNode<K, V> root() {for (TreeNode<K, V> r = this, p; ; ) {if ((p = r.parent) == null)return r;r = p;}}/*** Ensures that the given root is the first node of its bin.* 确认给定的root节点在table的首个节点中,即调整为头节点*/static <K, V> void moveRootToFront(Node<K, V>[] tab, TreeNode<K, V> root) {int n;if (root != null && tab != null && (n = tab.length) > 0) {//校验root是否为空、table是否为空、table的length是否大于0int index = (n - 1) & root.hash;//计算root节点的索引位置TreeNode<K, V> first = (TreeNode<K, V>) tab[index];//将root挪到头节点if (root != first) {//如果该索引位置的头节点不是root节点,则该索引位置的头节点替换为root节点Node<K, V> rn;tab[index] = root;//将该索引位置的头节点赋值为root节点TreeNode<K, V> rp = root.prev;//root节点的上一个节点if ((rn = root.next) != null)//如果root节点的next节点不为空,则将root节点的next节点的prev属性设置为root节点的prev节点((TreeNode<K, V>) rn).prev = rp;if (rp != null)//如果root节点的prev节点不为空,则将root节点的prev节点的next属性设置为root节点的next节点rp.next = rn;if (first != null)//如果原头节点不为空, 则将原头节点的prev属性设置为root节点first.prev = root;root.next = first;//将root节点的next属性设置为原头节点root.prev = null;//root此时已经被放到该位置的头节点位置,因此将prev属性设为空}assert checkInvariants(root);//该索引位置的头节点就是root节点,检查树是否正常}}/*** Finds the node starting at root p with the given hash and key.* The kc argument caches comparableClassFor(key) upon first use* comparing keys.* 1. 从调用此方法的节点开始查找, 通过hash值和key找到对应的节点* 2. 此方法是红黑树节点的查找, 红黑树是特殊的自平衡二叉查找树* 3. 平衡二叉查找树的特点: 左节点<根节点<右节点*/final TreeNode<K, V> find(int h, Object k, Class<?> kc) {TreeNode<K, V> p = this;//将p节点赋值为调用此方法的节点//从p节点开始向下遍历do {int ph, dir;K pk;TreeNode<K, V> pl = p.left, pr = p.right, q;if ((ph = p.hash) > h)//如果传入的hash值小于p节点的hash值,则往p节点的左边遍历p = pl;else if (ph < h)//如果传入的hash值和key值等于p节点的hash值和key值,则p节点为目标节点,返回p节点p = pr;else if ((pk = p.key) == k || (k != null && k.equals(pk)))//如果传入的hash值和key值等于p节点的hash值和key值,则p节点为目标节点,返回p节点return p;else if (pl == null)//p节点的左节点为空则将向右遍历p = pr;else if (pr == null)//p节点的右节点为空则向左遍历p = pl;else if ((kc != null ||//如果以上条件还不满足,则对p节点和k节点进行比较(kc = comparableClassFor(k)) != null) &&//kc不为空代表k实现了Comparable(dir = compareComparables(kc, k, pk)) != 0)//k<pk则dir<0, k>pk则dir>0p = (dir < 0) ? pl : pr;//根据dir进行判断向哪一边搜索else if ((q = pr.find(h, k, kc)) != null)//代码走到此处, 代表key所属类没有实现Comparable, 直接指定向p的右边遍历return q;elsep = pl;} while (p != null);return null;}/*** Calls find for root node.* 获取红黑树节点*/final TreeNode<K, V> getTreeNode(int h, Object k) {//1. 首先找到红黑树的根节点;//2. 再使用根节点调用find方法return ((parent != null) ? root() : this).find(h, k, null);}/*** Tie-breaking utility for ordering insertions when equal* hashCodes and non-comparable. We don't require a total* order, just a consistent insertion rule to maintain* equivalence across rebalancings. Tie-breaking further than* necessary simplifies testing a bit.* 用于不可比较或者hashcode相同时进行比较的方法,只是一个一致的插入规则,用来维护重定位的等价性*/static int tieBreakOrder(Object a, Object b) {int d;if (a == null || b == null ||(d = a.getClass().getName().compareTo(b.getClass().getName())) == 0)d = (System.identityHashCode(a) <= System.identityHashCode(b) ?-1 : 1);return d;}/*** Forms tree of the nodes linked from this node.* 构建红黑树*/final void treeify(Node<K, V>[] tab) {TreeNode<K, V> root = null;// 将调用此方法的节点hd赋值给x,以x作为起点,开始进行遍历for (TreeNode<K, V> x = this, next; x != null; x = next) {// next赋值为x的下个节点next = (TreeNode<K, V>) x.next;// 将x的左右节点设置为空x.left = x.right = null;if (root == null) {// 如果还没有根节点, 则将x设置为根节点x.parent = null;// 根节点没有父节点x.red = false;// 根节点必须为黑色root = x;// 将x设置为根节点} else {//root不为空的时候K k = x.key;// k赋值为x的keyint h = x.hash;// h赋值为x的hash值Class<?> kc = null;// 当前节点x不是根节点, 则从根节点开始查找属于该节点的位置for (TreeNode<K, V> p = root; ; ) {int dir, ph;K pk = p.key;if ((ph = p.hash) > h)//如果x节点的hash值小于p节点的hash值,则将dir赋值为-1, 代表向p的左边查找dir = -1;else if (ph < h)//如果x节点的hash值大于p节点的hash值,则将dir赋值为1, 代表向p的右边查找dir = 1;else if ((kc == null &&(kc = comparableClassFor(k)) == null) ||(dir = compareComparables(kc, k, pk)) == 0)// 走到这代表x的hash值和p的hash值相等,则比较key值; 如果k没有实现Comparable接口 或者 x节点的key和p节点的key相等dir = tieBreakOrder(k, pk);//使用定义的一套规则来比较x节点和p节点的大小,用来决定向左还是向右查找TreeNode<K, V> xp = p;// xp赋值为x的父节点,中间变量用于下面给x的父节点赋值if ((p = (dir <= 0) ? p.left : p.right) == null) {//dir<=0则向p左边查找,否则向p右边查找,如果为null,则代表该位置即为x的目标位置//x和xp节点的属性设置x.parent = xp;//x的父节点即为最后一次遍历的p节点if (dir <= 0)// 如果时dir <= 0, 则代表x节点为父节点的左节点xp.left = x;else//如果时dir > 0, 则代表x节点为父节点的右节点xp.right = x;root = balanceInsertion(root, x);//进行红黑树的插入平衡(通过左旋、右旋和改变节点颜色来保证当前树符合红黑树的要求)break;}}}}moveRootToFront(tab, root);//如果root节点不在table索引位置的头节点, 则将其调整为头节点}/*** 重新创建节点,替换原有树结构的节点* @return 返回链表*/final Node<K, V> untreeify(SimpleHashMap<K, V> map) {//hd指向头节点, tl指向尾节点Node<K, V> hd = null, tl = null;for (Node<K, V> q = this; q != null; q = q.next) {//从调用该方法的节点, 即链表的头节点开始遍历, 将所有节点全转为链表节点Node<K, V> p = map.replacementNode(q, null);//创建节点nodeif (tl == null)//如果tl尾节点为null, 则代表当前节点为第一个节点, 将hd赋值为该节点hd = p;else//否则, 将尾节点的next属性设置为当前节点ptl.next = p;tl = p;//每次都将tl节点指向当前节点, 即尾节点}return hd;//返回转换后的链表的头节点}/*** Tree version of putVal.* 红黑树的put操作,红黑树插入会同时维护原来的链表属性, 即原来的next属性*/final TreeNode<K, V> putTreeVal(SimpleHashMap<K, V> map, Node<K, V>[] tab,int h, K k, V v) {Class<?> kc = null;boolean searched = false;TreeNode<K, V> root = (parent != null) ? root() : this;//查找根节点, 索引位置的头节点并不一定为红黑树的根节点for (TreeNode<K, V> p = root; ; ) {//将根节点赋值给p节点,开始进行查找int dir, ph;K pk;if ((ph = p.hash) > h)//如果传入的hash值小于p节点的hash值,将dir赋值为-1,代表向p的左边查找树dir = -1;else if (ph < h)//如果传入的hash值大于p节点的hash值, 将dir赋值为1,代表向p的右边查找树dir = 1;else if ((pk = p.key) == k || (k != null && k.equals(pk)))//如果传入的hash值和key值等于p节点的hash值和key值, 则p节点即为目标节点, 返回p节点return p;else if ((kc == null &&(kc = comparableClassFor(k)) == null) ||(dir = compareComparables(kc, k, pk)) == 0) {//如果k所属的类没有实现Comparable接口 或者 k和p节点的key相等if (!searched) {//第一次符合条件, 从p节点的左节点和右节点分别调用find方法进行查找, 如果查找到目标节点则返回TreeNode<K, V> q, ch;searched = true;if (((ch = p.left) != null &&(q = ch.find(h, k, kc)) != null) ||((ch = p.right) != null &&(q = ch.find(h, k, kc)) != null))//否则使用定义的一套规则来比较k和p节点的key的大小, 用来决定向左还是向右查找return q;}dir = tieBreakOrder(k, pk);//dir<0则代表k<pk,则向p左边查找;反之亦然}TreeNode<K, V> xp = p;//xp赋值为x的父节点,中间变量,用于下面给x的父节点赋值if ((p = (dir <= 0) ? p.left : p.right) == null) {//dir<=0则向p左边查找,否则向p右边查找,如果为null,则代表该位置即为x的目标位置Node<K, V> xpn = xp.next;//走进来代表已经找到x的位置,只需将x放到该位置即可TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn);//创建新的节点, 其中x的next节点为xpn, 即将x节点插入xp与xpn之间//调整x、xp、xpn之间的属性关系if (dir <= 0)//如果时dir <= 0, 则代表x节点为xp的左节点xp.left = x;else//如果时dir > 0, 则代表x节点为xp的右节点xp.right = x;xp.next = x;//将xp的next节点设置为xx.parent = x.prev = xp;if (xpn != null)//如果xpn不为空,则将xpn的prev节点设置为x节点,与上文的x节点的next节点对应((TreeNode<K, V>) xpn).prev = x;moveRootToFront(tab, balanceInsertion(root, x));//进行红黑树的插入平衡调整return null;}}}/*** Removes the given node, that must be present before this call.* This is messier than typical red-black deletion code because we* cannot swap the contents of an interior node with a leaf* successor that is pinned by "next" pointers that are accessible* independently during traversal. So instead we swap the tree* linkages. If the current tree appears to have too few nodes,* the bin is converted back to a plain bin. (The test triggers* somewhere between 2 and 6 nodes, depending on tree structure).**/final void removeTreeNode(SimpleHashMap<K, V> map, Node<K, V>[] tab,boolean movable) {int n;if (tab == null || (n = tab.length) == 0)//table为空或者length为0直接返回return;int index = (n - 1) & hash;//根据hash计算出索引的位置TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl;//将索引位置的头节点赋值给first和rootTreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev;//该方法被将要被移除的node(TreeNode)调用, 因此此方法的this为要被移除node节点,将node的next节点赋值给succ节点,prev节点赋值给pred节点if (pred == null)//如果pred节点为空,则代表要被移除的node节点为头节点,则将table索引位置的值和first节点的值赋值为succ节点(node的next节点)即可tab[index] = first = succ;else//否则将pred节点的next属性设置为succ节点(node的next节点)pred.next = succ;if (succ != null)//如果succ节点不为空,则将succ的prev节点设置为pred, 与前面对应succ.prev = pred;if (first == null)//如果进行到此first节点为空,则代表该索引位置已经没有节点则直接返回return;if (root.parent != null)//如果root的父节点不为空, 则将root赋值为根节点root = root.root();if (root == null|| (movable&& (root.right == null|| (rl = root.left) == null|| rl.left == null))) {//通过root节点来判断此红黑树是否太小, 如果是则调用untreeify方法转为链表节点并返回,tab[index] = first.untreeify(map);  // too small, (转链表后就无需再进行下面的红黑树处理)return;}//红黑树的操作TreeNode<K, V> p = this, pl = left, pr = right, replacement;//将p赋值为要被移除的node节点,pl赋值为p的左节点,pr赋值为p 的右节点if (pl != null && pr != null) {//如果p的左节点和右节点都不为空时TreeNode<K, V> s = pr, sl;//将s节点赋值为p的右节点while ((sl = s.left) != null) // find successor 向左一直查找,跳出循环时,s为没有左节点的节点s = sl;boolean c = s.red;s.red = p.red;p.red = c; // swap colors 交换p节点和s节点的颜色TreeNode<K, V> sr = s.right;//s的右节点TreeNode<K, V> pp = p.parent;//p的父节点if (s == pr) { // 如果p节点的右节点即为s节点,则将p的父节点赋值为s,将s的右节点赋值为pp.parent = s;s.right = p;} else {TreeNode<K, V> sp = s.parent;//将sp赋值为s的父节点if ((p.parent = sp) != null) {//将p的父节点赋值为spif (s == sp.left)//如果s节点为sp的左节点,则将sp的左节点赋值为p节点sp.left = p;else//否则s节点为sp的右节点,则将sp的右节点赋值为p节点sp.right = p;//}if ((s.right = pr) != null)//s的右节点赋值为p节点的右节点pr.parent = s;//如果pr不为空,则将pr的父节点赋值为s}//第二次调整p.left = null;//将p的左节点赋值为空,pl已经保存了该节点if ((p.right = sr) != null)//将p节点的右节点赋值为sr,如果sr不为空,则将sr的父节点赋值为p节点sr.parent = p;if ((s.left = pl) != null)//将s节点的左节点赋值为pl,如果pl不为空,则将pl的父节点赋值为s节点pl.parent = s;if ((s.parent = pp) == null)//将s的父节点赋值为p的父节点pp,如果pp为空,则p节点为root节点, 交换后s成为新的root节点root = s;else if (p == pp.left)//如果p不为root节点, 并且p是pp的左节点,则将pp的左节点赋值为s节点pp.left = s;elsepp.right = s;if (sr != null)//寻找replacement节点,用来替换掉p节点; 如果sr不为空,则replacement节点为sr,因为s没有左节点,所以使用s的右节点来替换p的位置replacement = sr;else//如果sr为空,则s为叶子节点,replacement为p本身,只需要将p节点直接去除即可replacement = p;} else if (pl != null)//如果p的左节点不为空,右节点为空,replacement节点为p的左节点replacement = pl;else if (pr != null)//如果p的右节点不为空,左节点为空,replacement节点为p的右节点replacement = pr;else//如果p的左右节点都为空, 即p为叶子节点, replacement节点为p节点本身replacement = p;//第三次调整:使用replacement节点替换掉p节点的位置,将p节点移除if (replacement != p) {//如果p节点不是叶子节点TreeNode<K, V> pp = replacement.parent = p.parent;//将p节点的父节点赋值给replacement节点的父节点, 同时赋值给pp节点if (pp == null)//如果p没有父节点, 即p为root节点,则将root节点赋值为replacement节点即可(root = replacement).red = false;else if (p == pp.left)//如果p不是root节点, 并且p为pp的左节点,则将pp的左节点赋值为替换节点replacementpp.left = replacement;else//如果p不是root节点, 并且p为pp的右节点,则将pp的右节点赋值为替换节点replacementpp.right = replacement;p.left = p.right = p.parent = null;//p节点的位置已经被完整的替换为replacement, 将p节点清空, 以便垃圾收集器回收}//如果p节点不为红色则进行红黑树删除平衡调整,如果删除的节点是红色则不会破坏红黑树的平衡无需调整TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);if (replacement == p) {  // 如果p节点为叶子节点, 则简单的将p节点去除即可TreeNode<K, V> pp = p.parent;p.parent = null;//将p的parent属性设置为空if (pp != null) {if (p == pp.left)//如果p节点为父节点的左节点,则将父节点的左节点赋值为空pp.left = null;else if (p == pp.right)//如果p节点为父节点的右节点, 则将父节点的右节点赋值为空pp.right = null;}}if (movable)moveRootToFront(tab, r);//将root节点移到索引位置的头节点}/*** Splits nodes in a tree bin into lower and upper tree bins,* or untreeifies if now too small. Called only from resize;* see above discussion about split bits and indices.* 将树箱中的节点拆分为较低和较高的树箱,如果现在太小,则不进行校验。仅从resize调用;请参阅上文关于分割位和索引的讨论。* @param map 代表要扩容的HashMap* @param tab 代表新创建的数组,用来存放旧数组迁移的数据* @param index 代表旧数组的索引* @param bit 代表旧数组的长度,需要配合使用来做按位与运算*/final void split(SimpleHashMap<K, V> map, Node<K, V>[] tab, int index, int bit) {//做个赋值,因为这里是((TreeNode<K,V>)e)这个对象调用split()方法,// 所以this就是指(TreeNode<K,V>)e对象,所以才能类型对应赋值TreeNode<K, V> b = this;// Relink into lo and hi lists, preserving order// 设置低位首节点和低位尾节点TreeNode<K, V> loHead = null, loTail = null;//设置高位首节点和高位尾节点TreeNode<K, V> hiHead = null, hiTail = null;//定义两个变量,后边比较使用,它们决定了红黑树是否要转回链表int lc = 0, hc = 0;//这个for循环就是对从e节点开始对整个红黑树做遍历for (TreeNode<K, V> e = b, next; e != null; e = next) {//取e的下一节点赋值给next遍历next = (TreeNode<K, V>) e.next;//取好e的下一节点后,把它赋值为空,方便GC回收e.next = null;//如果e的hash值与老表的容量进行与运算为0,则扩容后的索引位置跟老表的索引位置一样/*e.hash与oldCap对应的有效高位上的值是0的话,哪怕扩容了,新数组索引还是不变,而如果e.hash与oldCap对应的有效高位上的值是1的话,那这个元素在新数组的下标位置就等于【原数组下标位置+原数组长度】。这样就通过这个运算把原来的一条链表拆成了两条链表,然后这两条链表各自归属到新数组中对应的位置。*/if ((e.hash & bit) == 0) {if ((e.prev = loTail) == null)loHead = e;elseloTail.next = e;loTail = e;//做个计数,看下拉出低位链表下会有几个元素++lc;} else {if ((e.prev = hiTail) == null)hiHead = e;elsehiTail.next = e;hiTail = e;//做个计数,看下拉出高位链表下会有几个元素++hc;}}if (loHead != null) {//如果低位链表首节点不为null,说明有这个链表存在if (lc <= UNTREEIFY_THRESHOLD)//当节点数量小于 红黑树结构转换为链表结构 的阀值,tab[index] = loHead.untreeify(map);//则将红黑树转为链表,低位链表,迁移到新数组中下标不变,还是等于原数组到下标else {//保持原有红黑树数据结构tab[index] = loHead;//低位链表,迁移到新数组中下标不变,还是等于原数组到下标,把低位链表整个拉到这个下标下,做个赋值if (hiHead != null) // //如果高位首节点不为空,说明原来的红黑树已经被拆分成两个链表了loHead.treeify(tab);//那么就需要构建新的红黑树了}}if (hiHead != null) {//如果高位链表首节点不为null,说明有这个链表存在if (hc <= UNTREEIFY_THRESHOLD)//当节点数量小于 红黑树结构转换为链表结构 的阀值,tab[index + bit] = hiHead.untreeify(map);//那就从红黑树转链表了,高位链表,迁移到新数组中的下标=【旧数组+旧数组长度】else {tab[index + bit] = hiHead;//高位链表,迁移到新数组中的下标=【旧数组+旧数组长度】,把高位链表整个拉到这个新下标下,做赋值if (loHead != null)//如果低位首节点不为空,说明原来的红黑树已经被拆分成两个链表了hiHead.treeify(tab);//那么就需要构建新的红黑树了}}}/* ------------------------------------------------------------ */// Red-black tree methods, all adapted from CLRstatic <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root, TreeNode<K, V> p) {TreeNode<K, V> r, pp, rl;if (p != null && (r = p.right) != null) {if ((rl = p.right = r.left) != null)rl.parent = p;if ((pp = r.parent = p.parent) == null)(root = r).red = false;else if (pp.left == p)pp.left = r;elsepp.right = r;r.left = p;p.parent = r;}return root;}static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root,TreeNode<K, V> p) {TreeNode<K, V> l, pp, lr;if (p != null && (l = p.left) != null) {if ((lr = p.left = l.right) != null)lr.parent = p;if ((pp = l.parent = p.parent) == null)(root = l).red = false;else if (pp.right == p)pp.right = l;elsepp.left = l;l.right = p;p.parent = l;}return root;}static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root,TreeNode<K, V> x) {x.red = true;for (TreeNode<K, V> xp, xpp, xppl, xppr; ; ) {if ((xp = x.parent) == null) {x.red = false;return x;} else if (!xp.red || (xpp = xp.parent) == null)return root;if (xp == (xppl = xpp.left)) {if ((xppr = xpp.right) != null && xppr.red) {xppr.red = false;xp.red = false;xpp.red = true;x = xpp;} else {if (x == xp.right) {root = rotateLeft(root, x = xp);xpp = (xp = x.parent) == null ? null : xp.parent;}if (xp != null) {xp.red = false;if (xpp != null) {xpp.red = true;root = rotateRight(root, xpp);}}}} else {if (xppl != null && xppl.red) {xppl.red = false;xp.red = false;xpp.red = true;x = xpp;} else {if (x == xp.left) {root = rotateRight(root, x = xp);xpp = (xp = x.parent) == null ? null : xp.parent;}if (xp != null) {xp.red = false;if (xpp != null) {xpp.red = true;root = rotateLeft(root, xpp);}}}}}}static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root,TreeNode<K, V> x) {for (TreeNode<K, V> xp, xpl, xpr; ; ) {if (x == null || x == root)return root;else if ((xp = x.parent) == null) {x.red = false;return x;} else if (x.red) {x.red = false;return root;} else if ((xpl = xp.left) == x) {if ((xpr = xp.right) != null && xpr.red) {xpr.red = false;xp.red = true;root = rotateLeft(root, xp);xpr = (xp = x.parent) == null ? null : xp.right;}if (xpr == null)x = xp;else {TreeNode<K, V> sl = xpr.left, sr = xpr.right;if ((sr == null || !sr.red) &&(sl == null || !sl.red)) {xpr.red = true;x = xp;} else {if (sr == null || !sr.red) {if (sl != null)sl.red = false;xpr.red = true;root = rotateRight(root, xpr);xpr = (xp = x.parent) == null ?null : xp.right;}if (xpr != null) {xpr.red = (xp == null) ? false : xp.red;if ((sr = xpr.right) != null)sr.red = false;}if (xp != null) {xp.red = false;root = rotateLeft(root, xp);}x = root;}}} else { // symmetricif (xpl != null && xpl.red) {xpl.red = false;xp.red = true;root = rotateRight(root, xp);xpl = (xp = x.parent) == null ? null : xp.left;}if (xpl == null)x = xp;else {TreeNode<K, V> sl = xpl.left, sr = xpl.right;if ((sl == null || !sl.red) &&(sr == null || !sr.red)) {xpl.red = true;x = xp;} else {if (sl == null || !sl.red) {if (sr != null)sr.red = false;xpl.red = true;root = rotateLeft(root, xpl);xpl = (xp = x.parent) == null ?null : xp.left;}if (xpl != null) {xpl.red = (xp == null) ? false : xp.red;if ((sl = xpl.left) != null)sl.red = false;}if (xp != null) {xp.red = false;root = rotateRight(root, xp);}x = root;}}}}}/*** Recursive invariant check*/static <K, V> boolean checkInvariants(TreeNode<K, V> t) {TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right,tb = t.prev, tn = (TreeNode<K, V>) t.next;if (tb != null && tb.next != t)return false;if (tn != null && tn.prev != t)return false;if (tp != null && t != tp.left && t != tp.right)return false;if (tl != null && (tl.parent != t || tl.hash > t.hash))return false;if (tr != null && (tr.parent != t || tr.hash < t.hash))return false;if (t.red && tl != null && tl.red && tr != null && tr.red)return false;if (tl != null && !checkInvariants(tl))return false;if (tr != null && !checkInvariants(tr))return false;return true;}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/48346.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UM980高精度RTK定位模块支持哪些通信接口?

注 产品参数信息请以和芯星通最新版官方手册为准。

python-NLP:1中文分词

文章目录 规则分词正向最大匹配法逆向最大匹配法双向最大匹配法 统计分词语言模型HMM模型 jieba分词分词关键词提取词性标注 规则分词 基于规则的分词是一种机械分词方法&#xff0c;主要是通过维护词典&#xff0c;在切分语句时&#xff0c;将语句的每个字符串与词表中的词进行…

Java代码基础算法练习-字符串分类统计-2024.07.24

任务描述&#xff1a; 输入一行字符&#xff08;字符串长度不超过255&#xff09;&#xff0c;分别统计出其中英文字母、数字、空格和其他 字符的个数。&#xff08;提示&#xff0c;空格ASCALL码值为32&#xff09; 解决思路&#xff1a; 输入一字符串&#xff0c;先判断是否…

C#-日期时间字符串转时间戳,并且考虑时区问题

/// <summary>/// 假定服务器机器时区为东八&#xff0c;配置timeString也为东八&#xff08;通常服务器和配置的时区也必须一致&#xff09;。利用utc相对时间差&#xff0c;计算出对应时间戳/// 此方法无需考虑客户端本地时区/// </summary>/// <param name&q…

对递归的一些理解。力扣206题:翻转链表

今天在刷力扣的时候&#xff0c;在写一道翻转链表的题目的过程中&#xff0c;在尝试使用递归解决该问题的时候&#xff0c;第一版代码却每次都返回的是null&#xff0c;这个错误让我尝试去debug了一下&#xff0c;最终找出了问题&#xff0c;并且让我对递归有了一些更深的理解&…

顶级电子合同平台推荐:2024年精选

本文将介绍以下10款工具&#xff1a;e签宝、法大大、上上签、金格签约、契约锁、DocuSign、Concord、PandaDoc、Agiloft、Evisort。 在当今数字化时代&#xff0c;选择一个合适的电子合同平台可能会让人感到困惑&#xff0c;如何判断哪个平台最适合企业的需求&#xff1f;电子合…

Linux 必备基础知识与常用命令大汇总

这是我整理的关于Linux基础知识的笔记&#xff0c;主要为了方便在长期不用Linux的情况下&#xff0c;突然需要使用时可以快速查找。我最初有些犹豫是否应该写成文章&#xff0c;但我认为对于处于相似境遇的人来说&#xff0c;能够方便地复制和使用这些知识会很有帮助&#xff0…

SpringCloud:使用OpenFeign优化前面的Nacos实现高效购物车商品信息处理

在现代电商系统中&#xff0c;购物车的性能直接影响用户的购物体验。为了提升系统性能和用户满意度&#xff0c;我们可以使用Spring Cloud的OpenFeign和负载均衡器来高效地处理购物车中的商品信息。本文将详细介绍如何在Spring Cloud中集成这些组件&#xff0c;并实现一个高效的…

【汽车】常见缩略语说明

缩略语英文名称中文名称3GPP3rd Generation Partnership Project第三代合作伙伴计划5GAA5G Automotive Association5g汽车协会APPApplication应用ADASAdvanced Driver Assistant Systems高级驾驶辅助系统CaaSCarasaService汽车即服务CANController Area Network控制器局域网络C…

Java之数组应用-选择排序-插入排序

已经完全掌握了冒泡排序和二分查找的同学&#xff0c;可以自己尝试学习选择、插入排序。不要求今天全部掌握&#xff0c;最近2-3天掌握即可&#xff01; 1 选择排序 选择排序(Selection Sort)的原理有点类似插入排序&#xff0c;也分已排序区间和未排序区间。但是选择排序每次…

Mysql备份恢复

目录 1.Mysql日志管理 1.1为什么需要日志 1.2日志作用 1.3数据丢失或破坏的原因 1.4常见日志类型之错误日志 1.5常见日志类型之通用查询日志 1.6常见日志类型之慢查询日志 1.7常见日志类型之二进制日志 1.8常见日志类型之事务日志 2.MySQL备份 2.1备份类型 2.2逻辑…

超低功耗ARM Cortex-M33 TZ MCU STM32WBA54、STM32WBA55:通过提升无线性能实现更出色的用户体验

摘要 STM32WBA54、STM32WBA55产品系列同时支持多种无线标准&#xff0c;包括Bluetooth低功耗 5.4&#xff08;已认证&#xff09;、Zigbee、Thread以及可用作Thread边界路由器的Matter。 该产品系列具有出色的灵活性和更强的安全性&#xff0c;可帮助开发人员应对不断变化的无…

新能源汽车的充电网络安全威胁和防护措施

1. 物理攻击&#xff1a;例如恶意破坏、搬走充电设施等&#xff0c;这可能会对充电设施造成损害&#xff0c;妨碍正常的电力传输。 2. 网络攻击&#xff1a; 黑客可能利用系统漏洞攻击网络&#xff0c;破坏设备&#xff0c;并窃取用户的个人信息、支付信息等&#xff1b; 车辆…

24暑假算法刷题 | Day21 | LeetCode 669. 修剪二叉搜索树,108. 将有序数组转换为二叉搜索树,538. 把二叉搜索树转换为累加树

目录 669. 修剪二叉搜索树题目描述题解 108. 将有序数组转换为二叉搜索树题目描述题解 538. 把二叉搜索树转换为累加树题目描述题解 669. 修剪二叉搜索树 点此跳转题目链接 题目描述 给你二叉搜索树的根节点 root &#xff0c;同时给定最小边界low 和最大边界 high。通过修剪…

企业邮件系统管理(二)配置与优化指南

文章目录 企业邮件系统管理&#xff1a;配置与优化指南引言第一部分&#xff1a;了解邮件系统的基础架构一、MTA与MUA的定义及作用二、常见的邮件协议 第二部分&#xff1a;Exchange Server 2010的核心功能一、Exchange Server的服务器角色二、“典型安装”包含的服务器角色三、…

packet_write_wait: Connection to <IP> port <PORT>: Broken pipe

packet_write_wait: Connection to <IP> port <PORT>: Broken pipe 是一个常见的网络错误&#xff0c;指的是尝试向一个已经损坏的 TCP 连接写入数据。下面是这个错误的一些可能原因和解决方法&#xff1a; 可能的原因&#xff1a; 客户端断开连接&#xff1a; 远…

vite环境下使用bootstrap

环境 nodejs 18 pnpm 初始化 pnpm init pnpm add -D vite --registry http://registry.npm.taobao.org pnpm add bootstrap popperjs/core --registry http://registry.npm.taobao.org pnpm add -D sass --registry http://registry.npm.taobao.org新建vite.config.js cons…

【git】如何实现规范git commit -m的格式

.husky/commit-msg #!/usr/bin/env sh . "$(dirname -- "$0")/_/husky.sh"yarn commitlint --edit $1.vscode/settings.json "ahooks","aliyuncs","antd","commitlint", // 新增"deadcode","deno…

用三行代码“偷袭白嫖党”,保护自己的代码(多语言实现)

计算机科学专业的同学们最近遇到了一件烦心事。教授布置了一系列具有挑战性的编程作业&#xff0c;需要大家运用所学知识来完成。然而&#xff0c;一些同学却动起了歪脑筋&#xff0c;想要通过抄袭他人的代码来轻松完成任务。 小李、小王和小张是同宿舍的好友&#xff0c;他们…

第1课:计算机历史与基础——一段跨越时代的技术演进

目录 引言计算机的起源机械计算时代 电子计算机的曙光个人计算机的革命现代计算机的多样化计算机的分类计算机的特点计算机技术的未来发展结语 引言 在数字化浪潮的推动下&#xff0c;计算机已经成为现代社会的中枢神经。它们不仅驱动着我们的工作流程&#xff0c;更深入地影响…