Boost搜索引擎:如何建立 用户搜索内容 与 网页文件内容 之间的关系

        如果想使“用户搜索内容”和“网页文件内容”之间产生联系就应该将“用户搜索内容”和“网页文件”分为很小的单元 (这个单元就是关键词寻找用户搜索单元是否出现在这个文档之中,如果出现就证明这个网页文件和用户搜索内容有关系,如果该搜索单元在这篇文章中出现的次数较高,也就证明:这篇文章与搜索内容有很强的相关性,这就是权值(weight)

        权值可以自己定义:比如标题出现一次对应的权值为10,内容出现一次对应的权值为5,再分别统计标题和文档内容中该搜素单元出现的次数。总权值(该搜索单元)= 标题出现的次数*10 +文档内容出现的次数*5;再用户所有的搜索单元的总权值加在一起就是这篇文章与用户搜索内容的相关性。我们可以通过每一篇文档的权值去进行排序,给用户呈现出最想要的文档内容。

        如何去存储这些网页文档内容呢?

        网页文档内容有 标题,网页文档内容 url网址三个部分。所以就需要结构体将他们组织在一起。我们可以选择线性容器进行存储,因为线性容器存储的位置就可以代表这篇文章的 文档ID。

        那么现在面临的问题就是,用户搜索单元(用户搜索关键词)和文档单元(文档关键词)之间如何建立联系。下面采用正排索引和倒排索引去建立它们之间的关系。

建立索引:

        什么是正排索引?

        正排索引就是文档ID文档之间的关系。

正排索引
文档ID文档内容
0文档1
1文档2


        正排索引的建立,就是将文档ID与文档内容之间进行直接关联。如上表所示。

        那问题来了,该如何关联呢?我们可以利用线性表,如数组,数组下标文档ID正好是对应的,我们将解析出来的数据进行提取,存放到一个包含 标题(title),内容(content),url(网址信息)的结构体,再将结构体放到数组中,这样就建立好了正排索引。

        什么是倒排索引?

        比如用户搜索 菜鸡爱玩,分词工具将菜鸡爱玩分为 菜鸡和爱玩,分别用菜鸡和爱玩去文档中找对应的关键词。再将关键词存在的 文档ID搜索关键词 之间建立关系。

关键词(唯一性)(关键词)文档ID,权重weigh(倒排索引拉链)
菜鸡文档2,文档1
爱玩文档2


 首先将处理好的数据进行关键词分割,用inverted_index(是map容器,map<关键词,倒排索引拉链>)统计关键词都出现在那些文档中,将关键词出现的这些文档放进倒排索引拉链中,这就行形成了关键词与文档ID之间的对应关系。从上面表可以看出,同一个文档ID是可以出现在不同的倒排索引拉链中的

然而,刚开始建立索引的过程是有些慢的,很吃系统资源,所以关于网页文档内容太大并且服务器资源比较少的话,就会建立失败,因此前面才会下载Boost库的部分文件,也就是网络文件,而不是全部文件。虽然这个过程慢,但是带来的好处,还是不小的,因为索引建立过程是不会进行搜索的,当建立好之后,只要你有搜索内容,我就去inverted_index的map容器中进行查找,找到对应的倒排索引拉链,再返回。

当搜索关键词到来时,我就在inverted_index中利用关键词去找,如果存在这个关键词,那所有与这个关键词相关的文档我都找到了,如果不存在,那真就不存在

这里的搜索关键词可能不止一个,搜索者会输入一段搜索语句,比如"菜鸡爱玩"可能会被分成“菜”“鸡”“菜鸡“”爱"“玩""爱玩”等。

正排索引代码:

            DocInfo *BuildForwardIndex(const std::string &line){//1. 解析line,字符串切分//line -> 3 string, title, content, urlstd::vector<std::string> results;const std::string sep = "\3";   //行内分隔符ns_util::StringUtil::Split(line, &results, sep);//ns_util::StringUtil::CutString(line, &results, sep);if(results.size() != 3){return nullptr;}//2. 字符串进行填充到DocIinfoDocInfo doc;doc.title = results[0]; //titledoc.content = results[1]; //contentdoc.url = results[2];   ///urldoc.doc_id = forward_index.size(); //先进行保存id,在插入,对应的id就是当前doc在vector中的下标!//3. 插入到正排索引的vectorforward_index.push_back(std::move(doc)); //doc,html文件内容return &forward_index.back();}

正排索引建立好之后,将构建好的结构体返回回去,交给倒排索引进行构建倒排索引拉链

因为倒排索引的构建需要文档ID,文档标题和文档内容去进行关键词分割,还有权值的计算

注意:这块不太理解就向后继续看,后面整体的构建索引会告诉你为什么这样做。

获取正排索引:

          //根据doc_id找到找到文档内容DocInfo *GetForwardIndex(uint64_t doc_id){if(doc_id >= forward_index.size()){std::cerr << "doc_id out range, error!" << std::endl;return nullptr;}return &forward_index[doc_id];

因为正排索引被构建了,所以直接利用文档ID在正排索引拉链(存放文档的结构体数组)中进行查找就可以了。 

什么是权值?

权值决定这篇文档与用户搜索内容之间是否存在关系以及体现出它们之间相关性的强弱因为每篇文章关于一个话题的侧重点不一样,所以我们就用权值的大小来区分是否是用户最想要的,将文档与搜索关键词之间的关系用关键词出现在标题和文档内容中的次数 和自定义权值大小 进行相关计算。

        比如标题出现一次对应的权值为10,内容出现一次对应的权值为5,再分别统计标题和文档内容中该搜素单元出现的次数。总权值(该搜索单元)= 标题出现的次数*10 +文档内容出现的次数*5;再用户所有的搜索单元的总权值加在一起就是这篇文章与用户搜索内容的相关性。我们可以通过每一篇文档的权值去进行排序,给用户呈现出最想要的文档内容。

你认为标题与搜索关键词的相关性大,就将标题的权值设置高点,同理,文档内容也是一样的。 

倒排索引代码:

            bool BuildInvertedIndex(const DocInfo &doc){//DocInfo{title, content, url, doc_id}//word -> 倒排拉链struct word_cnt{int title_cnt;int content_cnt;word_cnt():title_cnt(0), content_cnt(0){}};std::unordered_map<std::string, word_cnt> word_map; //用来暂存词频的映射表//对标题进行分词std::vector<std::string> title_words;ns_util::JiebaUtil::CutString(doc.title, &title_words);//if(doc.doc_id == 1572){//    for(auto &s : title_words){//        std::cout << "title: " << s << std::endl;//    }//}//对标题进行词频统计for(std::string s : title_words){boost::to_lower(s); //需要统一转化成为小写word_map[s].title_cnt++; //如果存在就获取,如果不存在就新建}//对文档内容进行分词std::vector<std::string> content_words;ns_util::JiebaUtil::CutString(doc.content, &content_words);//if(doc.doc_id == 1572){//    for(auto &s : content_words){//        std::cout << "content: " << s << std::endl;//    }//}//对内容进行词频统计for(std::string s : content_words){boost::to_lower(s);word_map[s].content_cnt++;}#define X 10
#define Y 1//Hello,hello,HELLOfor(auto &word_pair : word_map){InvertedElem item;item.doc_id = doc.doc_id;item.word = word_pair.first;item.weight = X*word_pair.second.title_cnt + Y*word_pair.second.content_cnt; //相关性InvertedList &inverted_list = inverted_index[word_pair.first];inverted_list.push_back(std::move(item));}return true;}
重点代码讲解:
1 —— InvertedList &inverted_list = inverted_index[word_pair.first];
2 —— inverted_list.push_back(std::move(item));

倒排索引拉链inverted_index是一个map<关键词,倒排索引拉链>,上面代码第一条就是将关键词对应的倒排索引拉链获取到,再将新的InvertedElem结构体插到倒排索引拉链中。这两条语句是可以合并的,看起来就会有些复杂。

经过上述操作于是就成功建立了的关键词和文档ID之间的关系,也就是说,我输入一段关键词用分词工具将关键词进行分离,用分离的关键词,在文档(标题,文档内容也进行了分词)中进行查找,因为使用了同一套分词工具,所以不会出现,文档中有该关键词,而搜不到的情况

获取倒排索引拉链:

​//根据关键字string,获得倒排拉链InvertedList *GetInvertedList(const std::string &word){auto iter = inverted_index.find(word);if(iter == inverted_index.end()){std::cerr << word << " have no InvertedList" << std::endl;return nullptr;}return &(iter->second);}​

在倒排索引构建好之后,所有的倒排索引拉链都存放在inverted_index的map容器中,只需要提供关键词进行查找即可,将找到的倒排索引拉链返回出去。

 构建索引(整合正排索引和倒排索引的构建):

          //根据去标签,格式化之后的文档,构建正排和倒排索引//data/raw_html/raw.txtbool BuildIndex(const std::string &input) //parse处理完毕的数据交给我{std::ifstream in(input, std::ios::in | std::ios::binary);if(!in.is_open()){std::cerr << "sorry, " << input << " open error" << std::endl;return false;}std::string line;int count = 0;while(std::getline(in, line)){DocInfo * doc = BuildForwardIndex(line);if(nullptr == doc){std::cerr << "build " << line << " error" << std::endl; //for deubgcontinue;}BuildInvertedIndex(*doc);count++;//if(count % 50 == 0){//std::cout <<"当前已经建立的索引文档: " << count <<std::endl;LOG(NORMAL, "当前的已经建立的索引文档: " + std::to_string(count));//}}return true;}

首先将处理好的网页文件读取取进来,利用std::ifstream类对文件进行相关操作,因为是以'\n'为间隔,将处理好的网页文件进行了分离,所以就采用getline(in,line)循环将文件中的数据读取到。

首先建立正排索引,其次再建立倒排索引因为倒排索引的建立是基于正排索引的

单例模式:

            Index(){} //但是一定要有函数体,不能deleteIndex(const Index&) = delete;Index& operator=(const Index&) = delete;static Index* instance;static std::mutex mtx;public:~Index(){}public:static Index* GetInstance(){if(nullptr == instance){mtx.lock();if(nullptr == instance){instance = new Index();}mtx.unlock();}return instance;}

单例模式,就是禁掉这个类的,拷贝构造和赋值重载,让这个类不能赋给别人,所有对象共用一个instance变量

因为在多线程模式下,会有很用户进行搜素,需要加把锁保证临界区资源不被破坏。

搜索模块:

搜索模块是在服务器构建索引之后进行的,在构建好的索引的服务器上进行关键词搜索。

首先将用户提供的搜索内容进行,关键词分割,将分割好的关键词存放到一个数组中,再去遍历这个数组,里面的每一个元素都是一个搜索关键词,再调用Index索引构建模块中的查找倒排索引函数,找到与关键词相关的文档,再将这些文档存入tokens_map的map容器中。

如果用户搜索关键词在网页文档中存在的情况下,一个关键词对应一个倒排索引拉链(需要了解倒排索引拉链,以及每个结构体中的成员)。

tokens_map的map容器中存储的是文档ID和struct InvertedElemPrint结构体之间的对应关系。

    struct InvertedElemPrint{uint64_t doc_id;int weight;std::vector<std::string> words;InvertedElemPrint():doc_id(0), weight(0){}};

该结构体中存放的是这篇文档的文档ID,权值(所有关键词权值的总和),words容器中存的是那些关键词出现在了这篇文档中我们可以利用这个words容器进行文章摘要的的提取,下面会提到。 

将不同关键词出现在同一文档中的权值进行加和,为了体现这篇文章与搜索内容之间的关系,权值越大表明这篇文章与搜索内容具有很强的相关性。

std::vector<InvertedElemPrint> inverted_list_all;

将  std::unordered_map<uint64_t, InvertedElemPrint> tokens_map 中的文档全部放到inverted_list_all的vector容器利用总权值进行排序,为用户呈现出最想要的内容

                  std::sort(inverted_list_all.begin(), inverted_list_all.end(),\[](const InvertedElemPrint &e1, const InvertedElemPrint &e2){return e1.weight > e2.weight;});

 排序语句是一条lambda表达式,你也可以写个仿函数传递给sort系统函数

                //4.[构建]:根据查找出来的结果,构建json串 -- jsoncpp --通过jsoncpp完成序列化&&反序列化Json::Value root;for(auto &item : inverted_list_all){ns_index::DocInfo * doc = index->GetForwardIndex(item.doc_id);if(nullptr == doc){continue;}Json::Value elem;elem["title"] = doc->title;elem["desc"] = GetDesc(doc->content, item.words[0]); //content是文档的去标签的结果,但是不是我们想要的,我们要的是一部分 TODOelem["url"]  = doc->url;//for deubg, for deleteelem["id"] = (int)item.doc_id;elem["weight"] = item.weight; //int->stringroot.append(elem);}//Json::StyledWriter writer;Json::FastWriter writer;*json_string = writer.write(root);

 最后将vector排好序的数据进行json串的构建,传递出去。 对于json相关知识不太了解的话,请搜所相关资料简单学习。

搜索模块代码:

            //query: 搜索关键字//json_string: 返回给用户浏览器的搜索结果void Search(const std::string &query, std::string *json_string){//1.[分词]:对我们的query进行按照searcher的要求进行分词std::vector<std::string> words;ns_util::JiebaUtil::CutString(query, &words);//2.[触发]:就是根据分词的各个"词",进行index查找,建立index是忽略大小写,所以搜索,关键字也需要//ns_index::InvertedList inverted_list_all; //内部InvertedElemstd::vector<InvertedElemPrint> inverted_list_all;std::unordered_map<uint64_t, InvertedElemPrint> tokens_map;for(std::string word : words){boost::to_lower(word);ns_index::InvertedList *inverted_list = index->GetInvertedList(word);if(nullptr == inverted_list){continue;}//不完美的地方:暂时可以交给大家 , 你/是/一个/好人 100//inverted_list_all.insert(inverted_list_all.end(), inverted_list->begin(), inverted_list->end());for(const auto &elem : *inverted_list){auto &item = tokens_map[elem.doc_id]; //[]:如果存在直接获取,如果不存在新建//item一定是doc_id相同的print节点item.doc_id = elem.doc_id;item.weight += elem.weight;item.words.push_back(elem.word);}}for(const auto &item : tokens_map){inverted_list_all.push_back(std::move(item.second));}//3.[合并排序]:汇总查找结果,按照相关性(weight)降序排序//std::sort(inverted_list_all.begin(), inverted_list_all.end(),\//      [](const ns_index::InvertedElem &e1, const ns_index::InvertedElem &e2){//        return e1.weight > e2.weight;//        });std::sort(inverted_list_all.begin(), inverted_list_all.end(),\[](const InvertedElemPrint &e1, const InvertedElemPrint &e2){return e1.weight > e2.weight;});//4.[构建]:根据查找出来的结果,构建json串 -- jsoncpp --通过jsoncpp完成序列化&&反序列化Json::Value root;for(auto &item : inverted_list_all){ns_index::DocInfo * doc = index->GetForwardIndex(item.doc_id);if(nullptr == doc){continue;}Json::Value elem;elem["title"] = doc->title;elem["desc"] = GetDesc(doc->content, item.words[0]); //content是文档的去标签的结果,但是不是我们想要的,我们要的是一部分 TODOelem["url"]  = doc->url;//for deubg, for deleteelem["id"] = (int)item.doc_id;elem["weight"] = item.weight; //int->stringroot.append(elem);}//Json::StyledWriter writer;Json::FastWriter writer;*json_string = writer.write(root);}

文档摘要:

在讲struct InvertedElemPrint结构体时,我就提过摘要的获取.

    struct InvertedElemPrint{uint64_t doc_id;int weight;std::vector<std::string> words;InvertedElemPrint():doc_id(0), weight(0){}};

这里详细讲一下,对于words容器中存的是用户传上来的搜索关键词,是部分也可能是全部,这不重要。

我们在实现摘要提取时,是以words中第一个关键词为准。这里有人会问,为什么这样做?

原因是:我想这么做,图方便。但是有没有更优的办法,当然有,不然我也不肯提这个问题。

那怎么做呢?

 for(std::string word : words){boost::to_lower(word);ns_index::InvertedList *inverted_list = index->GetInvertedList(word);if(nullptr == inverted_list){continue;}//不完美的地方:暂时可以交给大家 , 你/是/一个/好人 100//inverted_list_all.insert(inverted_list_all.end(), inverted_list->begin(), inverted_list->end());for(const auto &elem : *inverted_list){auto &item = tokens_map[elem.doc_id]; //[]:如果存在直接获取,如果不存在新建//item一定是doc_id相同的print节点item.doc_id = elem.doc_id;item.weight += elem.weight;item.words.push_back(elem.word);}}

上面代码是Search()函数中,提取用户搜索关键词的倒排索引拉链,大家应该不陌生了吧。其实看懂上面的Search()函数,也可以想出来这样的解决方法,就是利用该关键词对应的权值进行排序

我么可以创建一个优先级队列再创建一个结构体,这个结构体成员就是:该关键词 和 该关键词对应的权值再写一个仿函数compare()比较函数(利用权值去比较),将存进去的这些结构体进行排序,优先级队列实则就是一个大堆,第一个元素就是权值最大的,最后再对优先级队列进行遍历,将里面的元素全部插入到words容器中,这样就实现了关键词的排序。

我们在传入第一个关键词,给GetDesc()函数,去寻找该关键词周围的摘要。

            std::string GetDesc(const std::string &html_content, const std::string &word){//找到word在html_content中的首次出现,然后往前找50字节(如果没有,从begin开始),往后找100字节(如果没有,到end就可以的)//截取出这部分内容const int prev_step = 50;const int next_step = 100;//1. 找到首次出现auto iter = std::search(html_content.begin(), html_content.end(), word.begin(), word.end(), [](int x, int y){return (std::tolower(x) == std::tolower(y));});if(iter == html_content.end()){return "None1";}int pos = std::distance(html_content.begin(), iter);//2. 获取start,end , std::size_t 无符号整数int start = 0; int end = html_content.size() - 1;//如果之前有50+字符,就更新开始位置if(pos > start + prev_step) start = pos - prev_step;if(pos < end - next_step) end = pos + next_step;//3. 截取子串,returnif(start >= end) return "None2";std::string desc = html_content.substr(start, end - start);desc += "...";return desc;

 GetDesc()函数这个函数没什么技术难度,就是在简单的字符串查找,以及字符串截取,至于截取多少,因人而异,同时也要切合实际。将截取的摘要放到json串中。 

以上就是用户搜素内容和文档内容之间建立联系的过程,如有不懂尽可留言,你的留言是我最大的收获。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/48179.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

freesql简单使用操作mysql数据库

参考&#xff1a;freesql中文官网指南 | FreeSql 官方文档 这两天准备做一个测试程序&#xff0c;往一个系统的数据表插入一批模拟设备数据&#xff0c;然后还要模拟设备终端发送数据包&#xff0c;看看系统的承压能力。 因为系统使用的第三方框架中用到了freesql&#xff0c…

数据库的事务隔离级别有哪些?

并行事务会引发什么问题&#xff1f; 同时处理多个事务的时候&#xff0c;就可能出现脏读&#xff08;dirty read&#xff09;、不可重复读&#xff08;non-repeatable read&#xff09;、幻读&#xff08;phantom read&#xff09;的问题。脏读: 如果一个事务「读到」了另一个…

智能无人机检测:基于YOLO和深度学习的全流程实现

简介 随着无人机技术的快速发展&#xff0c;无人机在各个领域的应用越来越广泛。为了增强无人机的智能化水平&#xff0c;目标检测技术变得尤为重要。本文将介绍如何使用YOLO模型&#xff08;YOLOv8/v7/v6/v5&#xff09;构建一个基于深度学习的无人机目标检测系统&#xff0c…

NSSCTF-2021年SWPU联合新生赛

[SWPUCTF 2021 新生赛]finalrce 这道题目考察tee命令和转义符\ 这题主要是&#xff0c;遇到一种新的符号&#xff0c;"\"—转义符。我理解的作用就是在一些控制字符被过滤的时候&#xff0c;可以用转义符&#xff0c;让控制符失去原本的含义&#xff0c;变为字面量…

react中配置路径别名@

1.说明 在react项目中想要使用代替“src/”需要在项目根目录下配置两个文件&#xff0c;craco.config.js和sconfig.json&#xff1b; craco.config.js配置文件是用于项目解读为“src/” jsconfig.json配置文件是用于vsCode在编辑过程是输入后可以将src下的文件目录进行自动联…

k8s中部署Jenkins、SonarQube、StorageClass部署流程

部署Jenkins 系统环境&#xff1a; • kubernetes 版本&#xff1a;1.23.3 • jenkins 版本&#xff1a;2.172 • jenkins 部署示例文件 Github 地址&#xff1a;https://github.com/my-dlq/blog-example/tree/master/jenkins-deploy 一、设置存储目录 在 Kubenetes 环境下…

[DVWA靶场实战]-SQL注入攻击(命令注入+SQL回显注入+sqlmap工具实现自动化注入)详细教程

原理与内容 1.命令注入原理 以Windows系统的DOS命令为例&#xff0c;DOS命令可以查看本地网络、系统用户、当前目录、字符串查找&#xff0c;也可以复合命令。命令注入就是利用复合命令的特点&#xff0c;通过Web程序&#xff0c;在服务器上&#xff0c;拼接系统命令&#xf…

elk日志索引被锁blocks,日志无法写入

现象&#xff1a; kafka积压&#xff0c;logstash无法将日志写入到es logstash报错&#xff1a; [logstash.outputs.elasticsearch][main][] Retrying failed action {:status>403 :error>{“type”>“cluster_block_exception”, “reason”>“index [] blocked …

昇思MindSpore 应用学习-CycleGAN图像风格迁移互换

日期 心得 昇思MindSpore 应用学习-CycleGAN图像风格迁移互换&#xff08;AI代码学习&#xff09; CycleGAN图像风格迁移互换 模型介绍 模型简介 CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络&#xff0c;来自论文 Unpaired Image-to-Image Trans…

Rust代码答疑报错|Python一对一辅导答疑

Question 你好&#xff0c;我是悦创。 学员答疑&#xff1a; https://code.bornforthis.cn/?id4e72084d-1eaf-44ed-8067-744671491574https://code.bornforthis.cn/?id664ff169-41d6-409f-a05b-02ed42279759 问题代码&#xff1a; // You can bring module paths into sc…

使用python连接neo4j时报错:IndexError: pop from an empty deque的解决办法

遇见这个错&#xff0c;首先可能是python现在的py2neo的版本不对&#xff0c;把2021.1.0版本卸载&#xff0c;下载 py2neo4.2.0版本。我不是&#xff0c;一阵搜&#xff0c;发现需要改配置文件 首先找到你的neo4j的安装路径 在网上看的是&#xff0c;先找到data/dbms/auth文件…

Ins云手机在运营Instagram账号的优势

在数字时代&#xff0c;Instagram成为全球数亿用户的重要社交平台&#xff0c;其超过10亿的用户数量&#xff0c;为企业提供了广阔的营销空间。对于希望拓展海外市场的企业来说&#xff0c;使用Instagram进行引流和推广是一个高效且安全的选择。为了更高效地管理和运营多个Inst…

Python 实现股票指标计算——VR

VR (Volume Ratio) - 成交量变异率 1 公式 AV 股价上升日成交量&#xff1b;AVS N日内AV求和BV 股价下跌日成交量&#xff1b;BVS N日内BV求和CV 股价平盘日成交量&#xff1b;CVS N日内CV求和VR (AVS1/2CVS) ➗ (BVS1/2CVS) ✖ 100MAVR VR的M日简单移动平均 2 数据…

HDU1032——The 3n + 1 problem,HDU1033——Edge,HDU1034——Candy Sharing Game

目录 HDU1032——The 3n 1 problem 题目描述 运行代码 代码思路 HDU1033——Edge 题目描述 运行代码 代码思路 HDU1034——Candy Sharing Game 题目描述 运行代码 代码思路 HDU1032——The 3n 1 problem 题目描述 Problem - 1032 运行代码 #include <iostr…

java-jvm-栈内存溢出

在Java虚拟机&#xff08;JVM&#xff09;中&#xff0c;栈内存溢出&#xff08;Stack Overflow&#xff09;是指线程请求的栈深度超过了虚拟机允许的最大深度&#xff0c;导致JVM无法分配足够的内存来创建新的栈帧。这种情况下&#xff0c;JVM会抛出StackOverflowError异常。 …

相信开源的力量,MoonBit 构建系统正式开源

MoonBit 构建系统正式开源 作为由 AI 驱动的云服务和边缘计算开发者平台&#xff0c;MoonBit 自设计之初便注重工具链与语言的协同效果。MoonBit 为开发者提供了一套开箱即用的工具链&#xff0c;包括集成开发环境&#xff08;IDE&#xff09;、编译器、构建系统和包管理器&…

android audio不同音频流,(六)settings内音频流音量调整

&#xff08;1&#xff09;settings内&#xff0c;可设置音频流音量&#xff0c;如下图&#xff1a; &#xff08;2&#xff09;settings调整音量条进度&#xff0c;会触发SeekBarVolumizer对象&#xff1a; SeekBarVolumizer文件路径&#xff1a; frameworks/base/core/java/…

【MySQL进阶之路 | 高级篇】事务的ACID特性

1. 数据库事务概述 事务是数据库区别于文件系统的重要特性之一&#xff0c;当我们有了事务就会让数据库始终保持一致性&#xff0c;同时我们还能通过事务的机制恢复到某个时间点&#xff0c;这样可以保证给已提交到数据库的修改不会因为系统崩溃而丢失。 1.1 基本概念 事务&…

OpenCV图像滤波(1)双边滤波函数bilateralFilter的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 功能描述 bilateralFilter是图像处理和计算机视觉领域中的一种高级图像滤波技术&#xff0c;特别设计用于在去除噪声的同时保留图像的边缘和细节。相比于传…

React搭建Vite项目及各种项目配置

1. 创建Vite项目 在操作系统的命令终端&#xff0c;输入以下命令&#xff1a; yarn create vite 输入完成以后输入项目名称、选择开发框架&#xff0c;选择开发语言&#xff0c;如下图所示&#xff0c;即可完成项目创建。 注意事项&#xff1a; 1. Node版本必须符合要求&…