新手小白的pytorch学习第十弹----多类别分类问题模型以及九、十弹的练习

目录

  • 1 多类别分类模型
    • 1.1 创建数据
    • 1.2 创建模型
    • 1.3 模型传出的数据
    • 1.4 损失函数和优化器
    • 1.5 训练和测试
    • 1.6 衡量模型性能的指标
  • 2 练习Exercise

之前我们已经学习了 二分类问题,二分类就像抛硬币正面和反面,只有两种情况。
这里我们要探讨一个 多类别分类模型,比如输入一张图片,分类它是pizza、牛排或者寿司,这里的类别是三,就是多类别分类问题。

1 多类别分类模型

1.1 创建数据

# 创建数据
from sklearn.datasets import make_blobs
import torch
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.optim as optimRANDOM_SEED = 42
NUM_CLASSES = 4
NUM_FEATURES = 2# 创建多类别数据
X, y = make_blobs(n_samples = 1000,n_features = NUM_FEATURES, # X featurescenters = NUM_CLASSES, # y labelscluster_std = 1.5, # 让数据抖动random_state = RANDOM_SEED)# 将数据转换为 tensor
X = torch.from_numpy(X).type(torch.float)
y = torch.from_numpy(y).type(torch.LongTensor)print(X.dtype, y.dtype)

torch.float32 torch.int64

# 将数据集划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=RANDOM_SEED)
len(X_train), len(y_train), len(X_test), len(y_test)
print(X_train[:5], y_train[:5])

tensor([[ 5.0405, 3.3076],
[-2.6249, 9.5260],
[-8.5240, -9.0402],
[-6.0262, -4.4375],
[-3.3397, 7.2175]]) tensor([1, 0, 2, 2, 0])

# 可视化数据
plt.figure(figsize=(10, 7))
plt.scatter(X[:,0], X[:,1], c=y, cmap=plt.cm.RdYlBu)

在这里插入图片描述

# 创建设备无关的代码
device = "cuda" if torch.cuda.is_available() else "cpu"
device

‘cuda’

1.2 创建模型

# 创建模型
# 这次创建模型特殊的点在于我们在 __init__()括号的参数选择中,多添加了参数
# input_features:输入  output_features:输出 hidden_units:隐藏层中神经元的个数
class BlobModel(nn.Module):def __init__(self, input_features, output_features, hidden_units=8):super().__init__()self.linear_stack = nn.Sequential(nn.Linear(in_features=input_features, out_features=hidden_units),nn.ReLU(),nn.Linear(in_features=hidden_units, out_features=hidden_units),nn.ReLU(),nn.Linear(in_features=hidden_units, out_features=output_features))def forward(self, x):return self.linear_stack(x)model_0 = BlobModel(input_features=NUM_FEATURES, output_features=NUM_CLASSES, hidden_units=8).to(device)
model_0

BlobModel(
(linear_stack): Sequential(
(0): Linear(in_features=2, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=8, bias=True)
(3): ReLU()
(4): Linear(in_features=8, out_features=4, bias=True)
)
)

# 将数据和模型统一到目标设备上
X_train, y_train = X_train.to(device), y_train.to(device)
X_test, y_test = X_test.to(device), y_test.to(device)

1.3 模型传出的数据

# 先看一下模型会传出什么数据吧
model_0.eval()
with torch.inference_mode():y_logits = model_0(X_train)print(y_logits[:5])
print(y_train[:5])

tensor([[-0.7333, -0.0491, -0.1253, 0.2468],
[-0.6059, 0.0958, 0.1232, 0.0641],
[ 1.1539, 0.1951, -0.1268, -1.1032],
[ 0.6424, 0.1891, -0.1171, -0.7310],
[-0.4519, 0.1914, 0.0589, 0.0031]], device=‘cuda:0’)
tensor([1, 0, 2, 2, 0], device=‘cuda:0’)

很明显这里模型的输出和我们真实的输出是不一样的,是无法进行比较的,所以我们需要将logits -> prediction probabilities -> prediction labels

logits 就是我们模型原始的输出, prediction probabilities 是预测概率,表示我将这个数据预测为这个类别的概率,概率值最大的,那模型就可以认为数据被分为这个类最可靠最可信 prediction labels 预测标签,比如这里我们有四类数据,就是 [0, 1, 2, 3]

还记得我们之前是如何将 logits -> prediction probabilities 的吗?之前的二分类,我们使用的是sigmoid(),这里多类比分类,我们使用softmax方法

y_pred_probs = torch.softmax(y_logits, dim=1)
y_pred_probs

tensor([[0.1336, 0.2649, 0.2454, 0.3561],
[0.1420, 0.2863, 0.2943, 0.2774],
[0.5663, 0.2171, 0.1573, 0.0593],
…,
[0.1361, 0.2749, 0.3078, 0.2811],
[0.4910, 0.2455, 0.1806, 0.0829],
[0.1920, 0.3041, 0.2983, 0.2056]], device=‘cuda:0’)

# 上次二分类我们使用的 torch.round() 进行四舍五入, 那这里我们的多类别分类该如何进行呢?
# 由于这里四个类别,我们选取概率最大的值,找到概率最大值的下标位置,我们就知道它是哪个类别了
# 想起来,我们学过的tensor基础课了么
# 没错,就是 argmax() 返回最大值的位置
y_preds = torch.argmax(y_pred_probs[0])
print(y_preds)

tensor(3, device=‘cuda:0’)

这里的数据都是随机的,是没有训练的,所以效果是不太好的。

1.4 损失函数和优化器

# 创建损失函数
loss_fn = nn.CrossEntropyLoss()# 创建优化器
optimizer = optim.SGD(params=model_0.parameters(),lr=0.1)
# 定义一个计算Accuracy的函数
def accuracy_fn(y_true, y_pred):correct = torch.eq(y_true, y_pred).sum().item()return (correct / len(y_pred))*100

1.5 训练和测试

# 训练数据
# 设置训练周期
epochs = 100for epoch in range(epochs):# 模型训练model_0.train()y_logits = model_0(X_train)y_preds = torch.softmax(y_logits, dim=1).argmax(dim=1)loss = loss_fn(y_logits, y_train)acc = accuracy_fn(y_true=y_train,y_pred = y_preds)optimizer.zero_grad()loss.backward()optimizer.step()# 模型测试model_0.eval()with torch.inference_mode():test_logits = model_0(X_test)test_preds = torch.softmax(test_logits, dim=1).argmax(dim=1)test_loss = loss_fn(test_logits,y_test)test_acc = accuracy_fn(y_true=y_test,y_pred=test_preds)# 打印输出if epoch % 10 == 0:print(f"Epoch:{epoch} | Train Loss:{loss:.4f} | Train Accuracy:{acc:.2f}% | Test Loss:{test_loss:.4f} | Test Accuracy:{test_acc:.2f}%")

Epoch:0 | Train Loss:1.5929 | Train Accuracy:1.88% | Test Loss:1.2136 | Test Accuracy:31.50%
Epoch:10 | Train Loss:0.9257 | Train Accuracy:53.37% | Test Loss:0.8747 | Test Accuracy:72.00%
Epoch:20 | Train Loss:0.6246 | Train Accuracy:91.25% | Test Loss:0.5729 | Test Accuracy:97.00%
Epoch:30 | Train Loss:0.2904 | Train Accuracy:97.62% | Test Loss:0.2503 | Test Accuracy:99.00%
Epoch:40 | Train Loss:0.1271 | Train Accuracy:99.12% | Test Loss:0.1101 | Test Accuracy:99.00%
Epoch:50 | Train Loss:0.0771 | Train Accuracy:99.25% | Test Loss:0.0668 | Test Accuracy:99.00%
Epoch:60 | Train Loss:0.0576 | Train Accuracy:99.12% | Test Loss:0.0488 | Test Accuracy:99.00%
Epoch:70 | Train Loss:0.0479 | Train Accuracy:99.12% | Test Loss:0.0396 | Test Accuracy:99.50%
Epoch:80 | Train Loss:0.0422 | Train Accuracy:99.12% | Test Loss:0.0339 | Test Accuracy:99.50%
Epoch:90 | Train Loss:0.0385 | Train Accuracy:99.12% | Test Loss:0.0302 | Test Accuracy:99.50%

# 可视化
from helper_functions import plot_decision_boundary
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title("Train")
plot_decision_boundary(model=model_0, X=X_train, y=y_train)
plt.subplot(1, 2, 2)
plt.title("Test")
plot_decision_boundary(model=model_0, X=X_test, y=y_test)

在这里插入图片描述
哇塞,这个分类很赞吧,但是看这个划分,我们可以观察出可能不使用非线性函数也可以,咱们把模型里面的ReLU()去掉就可以啦,大家自己去试试吧,这里就不赘述啦~

1.6 衡量模型性能的指标

衡量一个模型的性能,不只是有accuracy,还有其他的,比如说:

  • F1 score
  • Precison
  • Recall
  • Confusion matrix
  • Accuracy
from torchmetrics import Accuracytorchmetrics_accuracy = Accuracy(task='multiclass', num_classes=4).to(device)# 计算准确度
torchmetrics_accuracy(test_preds, y_test)

tensor(0.9950, device=‘cuda:0’)

OK,我们还可以调用函数计算准确度呢!结束了这里的学习,开始我们的练习来检测我们的学习吧~

2 练习Exercise

1. Make a binary classification dataset with Scikit-Learn’s make_moons() function.
* For consistency, the dataset should have 1000 samples and a random_state=42.
* Turn the data into PyTorch tensors. Split the data into training and test sets using train_test_split with 80% training and 20% testing.

from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optimRANDOM_SEED = 42X, y = make_moons(n_samples=1000,noise=0.03,random_state=RANDOM_SEED)X[:5], y[:5]

(array([[-0.00933187, 0.39098105],
[ 0.95457387, -0.47375583],
[ 0.9185256 , -0.42519648],
[ 0.41276802, -0.37638459],
[-0.84532016, 0.52879908]]),
array([1, 1, 1, 1, 0], dtype=int64))

# 可视化数据
plt.figure(figsize=(10, 7))
plt.scatter(X[:,0], X[:,1], c=y, cmap=plt.cm.RdYlBu)

在这里插入图片描述
查看数据,我们发现,特征输入是2,输出是1,哇,看图像,是个二分类喔,这个模型肯定是要用到非线性的.

# 将数据转换为 Tensor
X = torch.from_numpy(X).type(torch.float)
y = torch.from_numpy(y).type(torch.float)
print(X.dtype, y.dtype)
print(X[:5], y[:5])

torch.float32 torch.float32
tensor([[-0.0093, 0.3910],
[ 0.9546, -0.4738],
[ 0.9185, -0.4252],
[ 0.4128, -0.3764],
[-0.8453, 0.5288]]) tensor([1., 1., 1., 1., 0.])

# 将数据划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2,random_state=RANDOM_SEED)
len(X_train), len(X_test), len(y_train), len(y_test)

(800, 200, 800, 200)

2. Build a model by subclassing nn.Module that incorporates non-linear activation functions and is capable of fitting the data you created in 1.
* Feel free to use any combination of PyTorch layers (linear and non-linear) you want.

# 设备无关
device = "cuda" if torch.cuda.is_available() else "cpu"
device

‘cuda’

class MoonModel(nn.Module):def __init__(self, input_features, output_features, hidden_units):super().__init__()self.linear_stack = nn.Sequential(nn.Linear(in_features=input_features, out_features=hidden_units),# nn.ReLU(),nn.Tanh(),nn.Linear(in_features=hidden_units, out_features=hidden_units),# nn.ReLU(),nn.Tanh(),nn.Linear(in_features=hidden_units, out_features=output_features))def forward(self, x):return self.linear_stack(x)model_0 = MoonModel(input_features=2,output_features=1, hidden_units=10).to(device)
model_0

MoonModel(
(linear_stack): Sequential(
(0): Linear(in_features=2, out_features=10, bias=True)
(1): Tanh()
(2): Linear(in_features=10, out_features=10, bias=True)
(3): Tanh()
(4): Linear(in_features=10, out_features=1, bias=True)
)
)

3. Setup a binary classification compatible loss function and optimizer to use when training the model.

# 损失函数和优化器
loss_fn = nn.BCEWithLogitsLoss()
optimizer = optim.SGD(params=model_0.parameters(),lr=0.1)

4. Create a training and testing loop to fit the model you created in 2 to the data you created in 1.
* To measure model accuray, you can create your own accuracy function or use the accuracy function in TorchMetrics.
* Train the model for long enough for it to reach over 96% accuracy.
* The training loop should output progress every 10 epochs of the model’s training and test set loss and accuracy.

# 将数据都放到统一的设备上
X_train, y_train = X_train.to(device), y_train.to(device)
X_test, y_test = X_test.to(device), y_test.to(device)
# 计算正确率的函数
def accuracy_fn(y_true, y_pred):correct = torch.eq(y_true, y_pred).sum().item()return (correct / len(y_pred))*100
print(y_logits.shape, y_train.shape)
print(len(y_train))

torch.Size([240, 3]) torch.Size([800])
800

# 训练和测试# 设置训练周期
epochs = 1000for epoch in range(epochs):# 训练model_0.train()y_logits = model_0(X_train).squeeze()y_preds = torch.round(torch.sigmoid(y_logits))loss = loss_fn(y_logits, y_train)acc = accuracy_fn(y_true=y_train,y_pred=y_preds)optimizer.zero_grad()loss.backward()optimizer.step()# 测试model_0.eval()with torch.inference_mode():test_logits = model_0(X_test).squeeze()test_preds = torch.round(torch.sigmoid(test_logits))test_loss = loss_fn(test_logits,y_test)test_acc = accuracy_fn(y_true=y_test,y_pred=test_preds)# 打印输出if epoch % 10 == 0:print(f"Epoch:{epoch} | Train Loss:{loss:.4f} | Train Accuracy:{acc:.2f}% | Test Loss:{test_loss:.4f} | Test Accuracy:{test_acc:.2f}%")

Epoch:0 | Train Loss:0.7151 | Train Accuracy:30.63% | Test Loss:0.7045 | Test Accuracy:34.50%
Epoch:10 | Train Loss:0.6395 | Train Accuracy:80.50% | Test Loss:0.6378 | Test Accuracy:76.00%
Epoch:20 | Train Loss:0.5707 | Train Accuracy:79.88% | Test Loss:0.5754 | Test Accuracy:75.00%

Epoch:990 | Train Loss:0.0172 | Train Accuracy:100.00% | Test Loss:0.0150 | Test Accuracy:100.00%
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings…

5. Make predictions with your trained model and plot them using the plot_decision_boundary() function created in this notebook.

# 可视化
from helper_functions import plot_decision_boundary
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title("Training")
plot_decision_boundary(model=model_0, X=X_train, y=y_train)
plt.subplot(1, 2, 2)
plt.title("Testing")
plot_decision_boundary(model=model_0, X=X_test, y=y_test)

在这里插入图片描述

6. Replicate the Tanh (hyperbolic tangent) activation function in pure PyTorch.
* Feel free to reference the ML cheatsheet website for the formula.
这个只需要将模型里面的ReLU()激活函数换为Tanh()即可

7. Create a multi-class dataset using the spirals data creation function from CS231n (see below for the code).
* Construct a model capable of fitting the data (you may need a combination of linear and non-linear layers).
* Build a loss function and optimizer capable of handling multi-class data (optional extension: use the Adam optimizer instead of SGD, you may have to experiment with different values of the learning rate to get it working).
* Make a training and testing loop for the multi-class data and train a model on it to reach over 95% testing accuracy (you can use any accuracy measuring function here that you like).
* Plot the decision boundaries on the spirals dataset from your model predictions, the plot_decision_boundary() function should work for this dataset too.

# Code for creating a spiral dataset from CS231n
import numpy as np
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
for j in range(K):ix = range(N*j,N*(j+1))r = np.linspace(0.0,1,N) # radiust = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # thetaX[ix] = np.c_[r*np.sin(t), r*np.cos(t)]y[ix] = j
# lets visualize the data
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.show()
# 创建 spiral 数据集
RANDOM_SEED = 42import numpy as np
N = 100 # 每一类点的数量
D = 2 # 维度
K = 3 # 类别的数量
X = np.zeros((N*K, D))
y = np.zeros(N*K, dtype='uint8') # 类别标签
for j in range(K):ix = range(N*j, N*(j+1))r = np.linspace(0.0, 1, N) # 半径t = np.linspace(j*4, (j+1)*4, N) + np.random.randn(N) * 0.2 # thetaX[ix] = np.c_[r*np.sin(t), r*np.cos(t)]y[ix] = j# 数据可视化
plt.scatter(X[:,0], X[:,1],c=y, s=40, cmap=plt.cm.Spectral)
plt.show()

在这里插入图片描述

print(X[:5],y[:5])
print(X.shape, y.shape)

[[0. 0. ]
[0.00183158 0.00993357]
[0.00362348 0.01987441]
[0.00290204 0.03016375]
[0.00458536 0.04014301]] [0 0 0 0 0]
(300, 2) (300,)

可以看出我们的数据,输入是2,输出是3,3个类别嘛

# 将数据转化为tensor
X = torch.from_numpy(X).type(torch.float)
y = torch.from_numpy(y).type(torch.LongTensor)
X.dtype, y.dtype

(torch.float32, torch.int64)

# 将数据划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=RANDOM_SEED)
len(X_train), len(X_test), len(y_train), len(y_test)

(240, 60, 240, 60)

len(X), len(y)

(300, 300)

# 设备无关
device = "cuda" if torch.cuda.is_available() else "cpu"
device

‘cuda’

# 将数据放到统一的设备上
X_train, y_train = X_train.to(device), y_train.to(device)
X_test, y_test = X_test.to(device), y_test.to(device)
# 创建模型
class SpiralModel(nn.Module):def __init__(self, input_features, output_features, hidden_layers):super().__init__()self.linear_stack = nn.Sequential(nn.Linear(in_features=input_features, out_features=hidden_layers),nn.Tanh(),nn.Linear(in_features=hidden_layers, out_features=hidden_layers),nn.Tanh(),nn.Linear(in_features=hidden_layers, out_features=output_features))def forward(self, x):return self.linear_stack(x)model_1 = SpiralModel(2, 3, 10).to(device)
model_1

SpiralModel(
(linear_stack): Sequential(
(0): Linear(in_features=2, out_features=10, bias=True)
(1): Tanh()
(2): Linear(in_features=10, out_features=10, bias=True)
(3): Tanh()
(4): Linear(in_features=10, out_features=3, bias=True)
)
)

# 损失函数和优化器
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(params=model_1.parameters(),lr=0.1)
print(y_logits.shape)
print(y_train.shape)
print(y_preds)

torch.Size([800])
torch.Size([240])
tensor([1., 0., 0., 0., 1., 0., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0.,
0., 1., 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
1., 1., 1., 1., 1., 1., 0., 1., 0., 1., 0., 0., 0., 0., 0., 1., 0., 1.,

1., 1., 0., 0., 0., 0., 1., 1., 1., 0., 1., 0., 1., 0., 1., 1., 1., 0.,
0., 1., 0., 0., 1., 1., 1., 1., 0., 1., 0., 1., 0., 1., 1., 0., 0., 1.,
1., 1., 0., 1., 0., 0., 0., 1.], device=‘cuda:0’,
grad_fn=)
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings…

torch.manual_seed(RANDOM_SEED)
torch.cuda.manual_seed(RANDOM_SEED)# 训练和测试
epochs = 100for epoch in range(epochs):# 训练model_1.train()y_logits = model_1(X_train)y_preds = torch.softmax(y_logits, dim=1).argmax(dim=1)loss = loss_fn(y_logits, y_train)acc = accuracy_fn(y_true=y_train,y_pred=y_preds)optimizer.zero_grad()loss.backward()optimizer.step()# 测试model_1.eval()with torch.inference_mode():test_logits = model_1(X_test)test_preds = torch.softmax(test_logits, dim=1).argmax(dim=1)test_loss = loss_fn(test_logits, y_test)test_acc = accuracy_fn(y_true=y_test,y_pred=test_preds)# 打印输出if epoch % 10 == 0:print(f"Epoch:{epoch} | Train Loss:{loss:.4f} | Train Accuracy:{acc:.2f}% | Test Loss:{test_loss:.4f} | Test Accuracy:{test_acc:.2f}%")

Epoch:0 | Train Loss:1.1065 | Train Accuracy:35.00% | Test Loss:0.9883 | Test Accuracy:40.00%
Epoch:10 | Train Loss:0.7705 | Train Accuracy:54.58% | Test Loss:0.7651 | Test Accuracy:55.00%
Epoch:20 | Train Loss:0.5308 | Train Accuracy:76.25% | Test Loss:0.4966 | Test Accuracy:75.00%
Epoch:30 | Train Loss:0.2872 | Train Accuracy:93.33% | Test Loss:0.2097 | Test Accuracy:95.00%
Epoch:40 | Train Loss:0.1477 | Train Accuracy:95.00% | Test Loss:0.0998 | Test Accuracy:98.33%
Epoch:50 | Train Loss:0.0820 | Train Accuracy:97.50% | Test Loss:0.0472 | Test Accuracy:100.00%
Epoch:60 | Train Loss:0.0488 | Train Accuracy:99.17% | Test Loss:0.0247 | Test Accuracy:100.00%
Epoch:70 | Train Loss:0.0418 | Train Accuracy:97.92% | Test Loss:0.0127 | Test Accuracy:100.00%
Epoch:80 | Train Loss:0.0307 | Train Accuracy:99.17% | Test Loss:0.0168 | Test Accuracy:100.00%
Epoch:90 | Train Loss:0.0282 | Train Accuracy:99.17% | Test Loss:0.0060 | Test Accuracy:100.00%

# 可视化看一下
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title("Training")
plot_decision_boundary(model=model_1, X=X_train, y=y_train)
plt.subplot(1, 2, 2)
plt.title("Testing")
plot_decision_boundary(model=model_1, X=X_test, y=y_test)

在这里插入图片描述
哇,看这个图像拟合的多么好,太厉害了!
This work is so good!

BB,今天的学习就到这里啦!

话说户部巷烤面筋尊嘟嘎嘎好吃

BB,如果文档对您有用的话,记得给我点个赞赞撒!

靴靴BB谢谢BB~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/47761.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高职国培丨数据分析与数据挖掘课程实施能力提升培训班正式开班

7月15日,由广东机电职业技术学院牵头,广东泰迪智能科技股份有限公司作为合作单位的“高职教师数据分析与数据挖掘课程实施能力提升培训班(高职国培)”正式开班。来自广东省各地36位高校教师参与本次线下师资国培班。 广东机电职业…

HarmonyOS 状态管理(一)

1. HarmonyOS 状态管理 1.1. 说明 官方文档(https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/arkts-state-management-V5) 1.1.1. 状态管理(V1稳定版) 状态管理(V1稳定版)提供了多种…

【iOS】——SideTable

SideTable Side Table主要用于存储和管理对象的额外信息,特别是与弱引用相关的数据。Side Table的设计和使用是Objective-C运行时实现弱引用的基础,使得ARC(Automatic Reference Counting)能够正确地处理弱引用的生命周期。 新版…

【系统架构设计 每日一问】四 如何对关系型数据库及NoSql数据库选型

根据不同的业务需求和场景,选择适合的数据库类型至关重要。以下是一个优化后的表格展示,涵盖了管理型系统、大流量系统、日志型系统、搜索型系统、事务型系统、离线计算和实时计算七大类业务系统的数据库选型建议。先明确下NoSQL的分类 NoSQL数据库分类…

大数据学习之sparkstreaming

SparkStreaming idea中初步实现 Spark core: SparkContext 核心数据结构:RDD Spark sql: SparkSession 核心数据结构:DataFrame Spark streaming: StreamingContext 核心数据结构:DStream(底层封装了RDD),遍历出其中的RDD即可进行…

ReadAgent,一款具有要点记忆的人工智能阅读代理

人工智能咨询培训老师叶梓 转载标明出处 现有的大模型(LLMs)在处理长文本时受限于固定的最大上下文长度,并且当输入文本越来越长时,性能往往会下降,即使在没有超出明确上下文窗口的情况下,LLMs 的性能也会随…

中文之美:荷·雅称

文章目录 引言I 荷雅称水宫仙子、六月花神水芝、水芸溪客、水旦芙蕖、菡萏朱华、红蕖风荷、静客II 与荷、莲相关的句子、诗词周敦颐李商隐李重元杨公远孟浩然刘光祖苏轼汪曾祺席慕蓉余光中引言 中文之美,美在诗词歌赋,美在绝句华章,也美在对事物名称的雅致表达。 中文对万物…

GPT-4o mini是什么?

今天,全网都知道 OpenAI 发现货了! GPT-4o mini 取代 GPT 3.5,从此坐上正主之位。 从官网信息来看,OpenAI 最新推出的 GPT-4o mini 重新定义了 AI 成本效益的标准,其性能优于前代模型 GPT-3.5 Turbo,且成本…

ruoyi-cloud-plus

1.X项目初始化 (dromara.org)参考文档! 可以直接参考以上链接!我只是整理我自己需要的部分,方便查看使用。 nacos 服务启动顺序 必须启动基础建设: mysql redis nacos可选启动基础建设: minio(影响文件上传) seata(影响分布式事务 默认开启…

Synopsys:Design Compiler的XG模式和DB模式

相关阅读 Synopsyshttps://blog.csdn.net/weixin_45791458/category_12738116.html?spm1001.2014.3001.5482 很久之前,Design Compiler使用的是DB模式(包括一些其他工具,例如DFT Compiler, Physical Compiler和Power Compiler)&…

二叉树基础及实现(一)

目录: 一. 树的基本概念 二. 二叉树概念及特性 三. 二叉树的基本操作 一. 树的基本概念: 1 概念 : 树是一种非线性的数据结构,它是由n(n>0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因…

数据结构之初始二叉树(4)

找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程(ಥ_ಥ)-CSDN博客 所属专栏:数据结构(Java版) 二叉树的基本操作 二叉树的相关刷题(上)通过上篇文章的学习,我们…

queue的模拟实现【C++】

文章目录 全部的实现代码放在了文章末尾什么是适配器模式?准备工作包含头文件定义命名空间类的成员变量 默认成员函数emptysizefrontbackpushpop全部代码 全部的实现代码放在了文章末尾 queue的模拟实现和stack一样,采用了C适配器模式 queue的适配器一…

Java生成四位纯数字并且确保唯一性

背景: 给了我一个需求,由于某些问题原因,需要给属性和数据添加一个code字段,这是给我发的消息 这两个要求其实是同一个需求,就是在创建对象的时候塞入一个unique的code嘛,听起来很简单吧,但是实…

GooglePlay 金融品类政策更新(7月17号)

距离上次政策大更新(4月5号)才过去了3个月,Google Play又迎来了一次大更新,不得不说Google Play的要求越来越高了。 我们来梳理一下这次GooglePlay针对金融品类更新了哪些政策: 1.要求提供金融产品和服务的开发者必须注册为组织…

Window环境下MySQL管理

1、MySQL服务启用和停止 图形化界面管理 使用键盘组合键(Win R)打开运行对话框,在对话框中输入services.msc并点击确定。 这里可以看到服务名称为MySQL84并处于正在运行的状态。 选中后右键可以进行暂停、停止、重启等操作。 命令提示符管理…

OpenCV 直方图概念,直方图均衡化原理详解

文章目录 直方图相关概念颜色灰度级作用应用场景 C 使用OpenCV绘制直方图单通道直方图关键代码分析:calcHist函数分析使用OpenCV API来绘制直方图 效果图: 彩色三通道直方图效果图: 直方图均衡化概念均衡化作用均衡化效果均衡化数学原理步骤数…

Linux中进程间通信--匿名管道和命名管道

本篇将会进入 Linux 进程中进程间通信,本篇简要的介绍了 Linux 中进程为什么需要通信,进程间通信的常用方式。然后详细的介绍了 Linux 进程间的管道通信方式,管道通信分为匿名管道和命名管道,本篇分别介绍了其实现的原理&#xff…

基于VMware(虚拟机) 创建 Ubunton24.04

目录 1.设置 root 密码 2. 防火墙设置 2.1 安装防火墙 2.2 开启和关闭防火墙 2.3 开放端口和服务规则 2.4 关闭端口和删除服务规则 2.5 查看防火墙状态 3. 换源 3.1 源文件位置 3.2 更新软件包 1. 设置网络 1. 在安装ubuntu时设置网络 2.在配置文件中修改 2.设置 r…

17_高级进程间通信 UNIX域套接字1

非命名的UNIX域套接字 第1个参数domain,表示协议族,只能为AF_LOCAL或者AF_UNIX; 第2个参数type,表示类型,只能为0。 第3个参数protocol,表示协议,可以是SOCK_STREAM或者SOCK_DGRAM。用SOCK_STR…