本篇文章列举了nn.Sequential,nn.ModuleList,nn.ModuleDict三个容器的使用方法,并且还学习了一种使用类封装模块的方法。通过本篇博客的学习,你将学习到三个容器和使用类构建容易的方法。
1.nn.Sequential
第一种方法直接列出每一层结构,第二种方法通过add_module的方式堆叠层,第三种方法使用字典的方式对层进行组织,第四种方法通过LIST列表的方式先堆叠层,然后再用sequential来骄傲如每一层,*表示拆散成一个一个的。
import torch
import torch.nn as nn
from collections import OrderedDict#Sequential 1 直接添加网络层
net1 = nn.Sequential(nn.Conv2d(3,6,kernel_size=5,padding=2),nn.Conv2d(6, 12, kernel_size=3, padding=1),nn.BatchNorm2d(12),nn.ReLU()
)print('***************Sequential 1********************')
print(net1)#Sequential 2 先定义容器,后添加网络层
net2 = nn.Sequential()
net2.add_module("conv1", nn.Conv2d(3,6,kernel_size=5,padding=2))
net2.add_module("conv2", nn.Conv2d(6, 12, kernel_size=3, padding=1))
net2.add_module("bn1", nn.BatchNorm2d(12))
net2.add_module("relu", nn.ReLU())print('***************Sequential 2********************')
print(net2)#Sequential 3 使用有序字典添加网络结构
net3 = nn.Sequential(OrderedDict([("conv1",nn.Conv2d(3,32,3,1,1)),("conv2", nn.Conv2d(32, 32, 3, 1, 1)),("Relu1", nn.ReLU()),("pool", nn.MaxPool2d(2))
]))print('****************Sequential 3*******************')
print(net3)#Sequential 4 使用有序字典添加网络结构
layers = []
layers.append(nn.Conv2d(3,32,3,1,1))
layers.append(nn.Conv2d(32, 32, 3, 1, 1))
layers.append(nn.ReLU())
layers.append(nn.MaxPool2d(2))
net4 = nn.Sequential(*layers)
print('*****************Sequential 4******************')
print(net4)
2.nn.ModuleList
第一种方法也是直接列出来,第二种方法使用了列表的方式。
#ModuleList 如果添加了extend,虽然使用更加灵活,但是整体上不是那么直观
model = nn.ModuleList([nn.Conv2d(3, 6, kernel_size=5, padding=2),nn.Conv2d(6, 12, kernel_size=3, padding=1),nn.BatchNorm2d(12),nn.ReLU()
])
model.extend([nn.Linear(12,12) for i in range(2)])
model.extend([nn.Linear(12,10)])
print('*****************ModuleList 1******************')
print(model)make_layers = []
def make_module(idx):layer = []layer.append(nn.Conv2d(3,16,3,1,1))layer.append(nn.BatchNorm2d(16))return nn.Sequential(*layer)for i in range(3):make_layers.append(make_module(i))net_moduleList = nn.ModuleList(make_layers)
print('*****************ModuleList 2******************')
print(net_moduleList)
3.nn.ModuleDict
使用字典的方式,在forward中通过传入参数的形式确定所采用的激活函数和模型
#ModuleDict
class MyModuleDict(nn.Module):def __init__(self):super(MyModuleDict,self).__init__()self.choices = nn.ModuleDict({"conv1":nn.Conv2d(10,12,3,1,1),"pool":nn.MaxPool2d(2)})self.activates = nn.ModuleDict({"relu":nn.ReLU(),"leakyRelu":nn.LeakyReLU(),"sigmoid":nn.Sigmoid()})def forward(self,x,choice,acti):x = self.choices[choice](x)x = self.activates[acti](x)return x
net_moduleDict = MyModuleDict()
print('*****************ModuleDict 1******************')
print(net_moduleDict)
4.类包裹的方法
对采用重复层(参数不同,代码相同)的局部模型,可以用一个类进行封装,每一通过传入参数来构建一个处理模块。
class ContinuousConv(nn.Module):def __init__(self,in_channels, out_channels, pre_batch_norm = True):super(ContinuousConv, self).__init__()self.in_channels = in_channelsself.out_channels = out_channelsif pre_batch_norm:self.ConvFoward = nn.Sequential(nn.BatchNorm2d(self.in_channels),nn.ReLU(),nn.Conv2d(self.in_channels,self.out_channels,3,padding=1),nn.BatchNorm2d(out_channels),nn.ReLU(),nn.Conv2d(self.out_channels,self.out_channels,3,padding=1))else:self.ConvFoward = nn.Sequential(nn.Conv2d(self.in_channels,self.out_channels,3,padding=1),nn.BatchNorm2d(out_channels),nn.ReLU(),nn.Conv2d(self.out_channels,self.out_channels,3,padding=1))def forward(self,x):x = self.ConvFoward(x)return xclass UNetPlusPlus(nn.Module):def __init__(self, num_class, deep_supervision=False):super(UNetPlusPlus,self).__init__()self.num_classes = num_classself.deep_supervision = deep_supervisionself.filters = [64, 128,256,512,1024]self.conv3_1 = ContinuousConv(512*2,512,pre_batch_norm=True)self.conv2_2 = ContinuousConv(256*3,256,pre_batch_norm=True)self.conv2_1 = ContinuousConv(256*2,256,pre_batch_norm=True)def forward(self,x):x = self.conv2_1(x)x = self.conv3_1(x)return xdeep_supervision = True
model_class = UNetPlusPlus(num_class=3,deep_supervision=deep_supervision)
print(model_class)print('*****************class wrap******************')
print(model_class)
5.总的代码
通过查看print的网络结构,可以看到每一个网络的结构
import torch
import torch.nn as nn
from collections import OrderedDict#Sequential 1 直接添加网络层
net1 = nn.Sequential(nn.Conv2d(3,6,kernel_size=5,padding=2),nn.Conv2d(6, 12, kernel_size=3, padding=1),nn.BatchNorm2d(12),nn.ReLU()
)print('***************Sequential 1********************')
print(net1)#Sequential 2 先定义容器,后添加网络层
net2 = nn.Sequential()
net2.add_module("conv1", nn.Conv2d(3,6,kernel_size=5,padding=2))
net2.add_module("conv2", nn.Conv2d(6, 12, kernel_size=3, padding=1))
net2.add_module("bn1", nn.BatchNorm2d(12))
net2.add_module("relu", nn.ReLU())print('***************Sequential 2********************')
print(net2)#Sequential 3 使用有序字典添加网络结构
net3 = nn.Sequential(OrderedDict([("conv1",nn.Conv2d(3,32,3,1,1)),("conv2", nn.Conv2d(32, 32, 3, 1, 1)),("Relu1", nn.ReLU()),("pool", nn.MaxPool2d(2))
]))print('****************Sequential 3*******************')
print(net3)#Sequential 4 使用有序字典添加网络结构
layers = []
layers.append(nn.Conv2d(3,32,3,1,1))
layers.append(nn.Conv2d(32, 32, 3, 1, 1))
layers.append(nn.ReLU())
layers.append(nn.MaxPool2d(2))
net4 = nn.Sequential(*layers)
print('*****************Sequential 4******************')
print(net4)#ModuleList 如果添加了extend,虽然使用更加灵活,但是整体上不是那么直观
model = nn.ModuleList([nn.Conv2d(3, 6, kernel_size=5, padding=2),nn.Conv2d(6, 12, kernel_size=3, padding=1),nn.BatchNorm2d(12),nn.ReLU()
])
model.extend([nn.Linear(12,12) for i in range(2)])
model.extend([nn.Linear(12,10)])
print('*****************ModuleList 1******************')
print(model)make_layers = []
def make_module(idx):layer = []layer.append(nn.Conv2d(3,16,3,1,1))layer.append(nn.BatchNorm2d(16))return nn.Sequential(*layer)for i in range(3):make_layers.append(make_module(i))net_moduleList = nn.ModuleList(make_layers)
print('*****************ModuleList 2******************')
print(net_moduleList)#ModuleDict
class MyModuleDict(nn.Module):def __init__(self):super(MyModuleDict,self).__init__()self.choices = nn.ModuleDict({"conv1":nn.Conv2d(10,12,3,1,1),"pool":nn.MaxPool2d(2)})self.activates = nn.ModuleDict({"relu":nn.ReLU(),"leakyRelu":nn.LeakyReLU(),"sigmoid":nn.Sigmoid()})def forward(self,x,choice,acti):x = self.choices[choice](x)x = self.activates[acti](x)return x
net_moduleDict = MyModuleDict()
print('*****************ModuleDict 1******************')
print(net_moduleDict)class ContinuousConv(nn.Module):def __init__(self,in_channels, out_channels, pre_batch_norm = True):super(ContinuousConv, self).__init__()self.in_channels = in_channelsself.out_channels = out_channelsif pre_batch_norm:self.ConvFoward = nn.Sequential(nn.BatchNorm2d(self.in_channels),nn.ReLU(),nn.Conv2d(self.in_channels,self.out_channels,3,padding=1),nn.BatchNorm2d(out_channels),nn.ReLU(),nn.Conv2d(self.out_channels,self.out_channels,3,padding=1))else:self.ConvFoward = nn.Sequential(nn.Conv2d(self.in_channels,self.out_channels,3,padding=1),nn.BatchNorm2d(out_channels),nn.ReLU(),nn.Conv2d(self.out_channels,self.out_channels,3,padding=1))def forward(self,x):x = self.ConvFoward(x)return xclass UNetPlusPlus(nn.Module):def __init__(self, num_class, deep_supervision=False):super(UNetPlusPlus,self).__init__()self.num_classes = num_classself.deep_supervision = deep_supervisionself.filters = [64, 128,256,512,1024]self.conv3_1 = ContinuousConv(512*2,512,pre_batch_norm=True)self.conv2_2 = ContinuousConv(256*3,256,pre_batch_norm=True)self.conv2_1 = ContinuousConv(256*2,256,pre_batch_norm=True)def forward(self,x):x = self.conv2_1(x)x = self.conv3_1(x)return xdeep_supervision = True
model_class = UNetPlusPlus(num_class=3,deep_supervision=deep_supervision)
print(model_class)print('*****************class wrap******************')
print(model_class)