Python酷库之旅-第三方库Pandas(036)

目录

一、用法精讲

111、pandas.Series.item方法

111-1、语法

111-2、参数

111-3、功能

111-4、返回值

111-5、说明

111-6、用法

111-6-1、数据准备

111-6-2、代码示例

111-6-3、结果输出

112、pandas.Series.xs方法

112-1、语法

112-2、参数

112-3、功能

112-4、返回值

112-5、说明

112-6、用法

112-6-1、数据准备

112-6-2、代码示例

112-6-3、结果输出

113、pandas.Series.add方法

113-1、语法

113-2、参数

113-3、功能

113-4、返回值

113-5、说明

113-6、用法

113-6-1、数据准备

113-6-2、代码示例

113-6-3、结果输出

114、pandas.Series.sub方法

114-1、语法

114-2、参数

114-3、功能

114-4、返回值

114-5、说明

114-6、用法

114-6-1、数据准备

114-6-2、代码示例

114-6-3、结果输出

115、pandas.Series.mul方法

115-1、语法

115-2、参数

115-3、功能

115-4、返回值

115-5、说明

115-6、用法

115-6-1、数据准备

115-6-2、代码示例

115-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

111、pandas.Series.item方法
111-1、语法
# 111、pandas.Series.item方法
pandas.Series.item()
Return the first element of the underlying data as a Python scalar.Returns:
scalar
The first element of Series or Index.Raises:
ValueError
If the data is not length = 1.
111-2、参数

        无

111-3、功能

        用于从pandas.Series对象中获取单一的元素值,并返回该值。

111-4、返回值

        返回Series中唯一元素的值。

111-5、说明

        在使用item方法之前,可以考虑检查Series的长度,以确保安全调用。

111-6、用法
111-6-1、数据准备
111-6-2、代码示例
# 111、pandas.Series.item方法
import pandas as pd
# 创建一个只有一个元素的Series对象
s = pd.Series([42])
# 使用item方法获取这个元素
if len(s) == 1:value = s.item()
else:print("Series does not contain exactly one element.")
print(value)
111-6-3、结果输出
# 111、pandas.Series.item方法
# 42
112、pandas.Series.xs方法
112-1、语法
# 112、pandas.Series.xs方法
pandas.Series.xs(key, axis=0, level=None, drop_level=True)
Return cross-section from the Series/DataFrame.This method takes a key argument to select data at a particular level of a MultiIndex.Parameters:
key
label or tuple of label
Label contained in the index, or partially in a MultiIndex.axis
{0 or ‘index’, 1 or ‘columns’}, default 0
Axis to retrieve cross-section on.level
object, defaults to first n levels (n=1 or len(key))
In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position.drop_level
bool, default True
If False, returns object with same levels as self.Returns:
Series or DataFrame
Cross-section from the original Series or DataFrame corresponding to the selected index levels.
112-2、参数

112-2-1、key(必须)任意数据类型,通常为索引标签,表示要提取的索引标签值,如果Series有多层索引,则key可以是一个具体的层级标签(对于多层索引,需要指定level)。

112-2-2、axis(可选,默认值为0)一个整数或字符串,表示指定操作的轴。对于Series来说,axis总是 0,因为Series只有一个轴,表示索引轴;在多层索引的DataFrame中,这个参数允许指定不同的轴。

112-2-3、level(可选,默认值为None)一个整数或字符串,表示指定要在多层索引中提取的具体层级。如果Series没有多层索引,此参数被忽略。如果指定此参数,则key应为指定层级的标签值。例如,在多层索引的Series中,可以通过指定level来选择特定的层级。

112-2-4、drop_level(可选,默认值为True)布尔值,表示指定在提取值后是否从结果中删除所使用的层级。如果为True,提取的结果将不包含使用的索引层级;如果为False,结果将保留该层级的索引。

112-3、功能

        用于从一个pandas.Series对象中选择特定的数据,该方法可以通过给定的索引标签来切片Series,并返回与该标签对应的值。

112-4、返回值

        返回指定索引标签对应的单个值,或者如果key匹配多个值,则返回一个新的Series。

112-5、说明

112-5-1、如果指定的key不存在于索引中,会引发KeyError。

112-5-2、当使用level时,确保Series是多层索引的,否则指定level参数会导致错误。

112-5-3、drop_level的设置会影响结果的索引结构,True时会去掉提取的层级,False时保留。

112-6、用法
112-6-1、数据准备
112-6-2、代码示例
# 112、pandas.Series.xs方法
# 112-1、基本应用
import pandas as pd
s = pd.Series([10, 20, 30], index=['a', 'b', 'c'])
# 获取索引为'b'的值
value = s.xs('b')
print(value, end='\n\n')# 112-2、多层索引示例
import pandas as pd
# 创建多层索引的 Series
arrays = [['A', 'A', 'B', 'B'], [1, 2, 1, 2]]
index = pd.MultiIndex.from_arrays(arrays, names=('letters', 'numbers'))
s_multi = pd.Series([100, 200, 300, 400], index=index)
# 获取数字为1的所有值,保持原始层级
value = s_multi.xs(1, level='numbers', drop_level=False)
print(value, end='\n\n')
# 获取数字为1的所有值,删除层级
value = s_multi.xs(1, level='numbers', drop_level=True)
print(value)
112-6-3、结果输出
# 112、pandas.Series.xs方法
# 112-1、基本应用
# 20# 112-2、多层索引示例
# 获取数字为1的所有值,保持原始层级
# letters  numbers
# A        1          100
# B        1          300
# dtype: int64# 获取数字为1的所有值,删除层级
# letters
# A    100
# B    300
# dtype: int64
113、pandas.Series.add方法
113-1、语法
# 113、pandas.Series.add方法
pandas.Series.add(other, level=None, fill_value=None, axis=0)
Return Addition of series and other, element-wise (binary operator add).Equivalent to series + other, but with support to substitute a fill_value for missing data in either one of the inputs.Parameters:
other
Series or scalar value
level
int or name
Broadcast across a level, matching Index values on the passed MultiIndex level.fill_value
None or float value, default None (NaN)
Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing.axis
{0 or ‘index’}
Unused. Parameter needed for compatibility with DataFrame.Returns:
Series
The result of the operation.
113-2、参数

113-2-1、other(必须)表示要与当前Series对象进行加法操作的对象。如果是Series或DataFrame,则将其与当前Series对象按元素逐一加法;如果是标量值,则该值会与Series中的每一个元素相加。

113-2-2、level(可选,默认值为None)一个整数或字符串,如果other是一个多层索引的Series或DataFrame,可以通过指定此参数来对齐相同的层级进行加法,level用于指明要对齐的层级标签。

113-2-3、fill_value(可选,默认值为None)标量值,当other中存在缺失值(NaN)时,用于填充缺失的值,即当other中某些索引标签在Series中不存在时,使用此值填补。

113-2-4、axis(可选,默认值为0)一个整数或字符串,表示指定沿哪个轴进行操作。对于Series,此参数通常被忽略,因为Series只有一个轴;对于DataFrame,则可以指定沿行或列进行操作。

113-3、功能

        用于执行两个Series对象之间的逐元素加法操作。

113-4、返回值

        返回一个新的Series对象,其中的每个元素是原Series和other对应位置元素的和。返回的Series的索引是Series与other的并集,如果other的索引中有当前Series中不存在的标签,这些标签对应的值会是填充值(如果设置了fill_value)或NaN(如果没有设置fill_value)。

113-5、说明

113-5-1、如果other的索引不完全匹配Series的索引,并且fill_value参数没有设置,缺失值会导致结果中的NaN。

113-5-2、使用fill_value可以处理缺失值,使加法操作更加鲁棒。

113-5-3、当涉及到多层索引时,确保level参数正确指定,以保证对齐的准确性。

113-6、用法
113-6-1、数据准备
113-6-2、代码示例
# 113、pandas.Series.add方法
# 113-1、基本用法
import pandas as pd
s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
s2 = pd.Series([4, 5, 6], index=['a', 'b', 'c'])
# 执行逐元素加法
result = s1.add(s2)
print(result, end='\n\n')# 113-2、使用标量值
import pandas as pd
s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
s2 = pd.Series([4, 5, 6], index=['a', 'b', 'c'])
# 使用标量值进行加法
result = s1.add(10)
print(result, end='\n\n')# 113-3、使用fill_value参数
import pandas as pd
s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
s2 = pd.Series([4, 5, 6], index=['a', 'b', 'c'])
s3 = pd.Series([7, 8], index=['a', 'd'])
result = s1.add(s3, fill_value=0)
print(result, end='\n\n')# 113-4、使用多层索引
import pandas as pd
# 创建多层索引的Series
arrays = [['A', 'A', 'B', 'B'], [1, 2, 1, 2]]
index = pd.MultiIndex.from_arrays(arrays, names=('letters', 'numbers'))
s_multi1 = pd.Series([10, 20, 30, 40], index=index)
s_multi2 = pd.Series([1, 2, 3, 4], index=index)
# 执行逐元素加法
result_multi = s_multi1.add(s_multi2)
print(result_multi)
113-6-3、结果输出
# 113、pandas.Series.add方法
# 113-1、基本用法
# a    5
# b    7
# c    9
# dtype: int64# 113-2、使用标量值
# a    11
# b    12
# c    13
# dtype: int64# 113-3、使用fill_value参数
# a    8.0
# b    2.0
# c    3.0
# d    8.0
# dtype: float64# 113-4、使用多层索引
# letters  numbers
# A        1          11
#          2          22
# B        1          33
#          2          44
# dtype: int64
114、pandas.Series.sub方法
114-1、语法
# 114、pandas.Series.sub方法
pandas.Series.sub(other, level=None, fill_value=None, axis=0)
Return Subtraction of series and other, element-wise (binary operator sub).Equivalent to series - other, but with support to substitute a fill_value for missing data in either one of the inputs.Parameters:
other
Series or scalar value
level
int or name
Broadcast across a level, matching Index values on the passed MultiIndex level.fill_value
None or float value, default None (NaN)
Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing.axis
{0 or ‘index’}
Unused. Parameter needed for compatibility with DataFrame.Returns:
Series
The result of the operation.
114-2、参数

114-2-1、other(必须)被减数,可以是与当前Series对象相同长度的Series、DataFrame或一个标量值,如果是DataFrame,则会对每列执行相应的减法操作。

114-2-2、level(可选,默认值为None)一个整数或字符串,如果当前Series或other有多层索引(MultiIndex),level参数用于指定在哪一层索引上对齐,这样可以在指定层级上进行逐元素减法运算,而不是在所有层级上。

114-2-3、fill_value(可选,默认值为None)标量值,当other的某些索引值在当前Series中不存在时,使用fill_value来填补这些缺失值,这样,fill_value代替了缺失的数据参与计算。

114-2-4、axis(可选,默认值为0)这个参数主要在DataFrame上有效,用于指定操作的轴;在Series上,通常没有必要设置这个参数,因为Series只有一个轴(轴0)。

114-3、功能

        用于对两个Series对象进行逐元素的减法操作。

114-4、返回值

        返回一个新的Series对象,其中的每个元素是原Series和other对应位置元素的差。返回的Series的索引是Series与other的并集,如果other的索引中有当前Series中不存在的标签,这些标签对应的值会是填充值(如果设置了fill_value)或NaN(如果没有设置fill_value)。

114-5、说明

        无

114-6、用法
114-6-1、数据准备
114-6-2、代码示例
# 114、pandas.Series.sub方法
# 114-1、基本用法
import pandas as pd
s1 = pd.Series([5, 6, 7], index=['a', 'b', 'c'])
s2 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
result = s1.sub(s2)
print(result, end='\n\n')# 114-2、使用level参数
import pandas as pd
arrays = [['A', 'A', 'B', 'B'], [1, 2, 1, 2]]
index = pd.MultiIndex.from_arrays(arrays, names=('letters', 'numbers'))
s1 = pd.Series([10, 20, 30, 40], index=index)
s2 = pd.Series([1, 2, 3, 4], index=index)
result = s1.sub(s2, level='letters')
print(result, end='\n\n')# 114-3、使用fill_value参数
import pandas as pd
s1 = pd.Series([5, 6], index=['a', 'b'])
s2 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
result = s1.sub(s2, fill_value=0)
print(result, end='\n\n')# 114-4、使用axis参数(主要适用于DataFrame)
import pandas as pd
df1 = pd.DataFrame({'A': [10, 20], 'B': [30, 40]})
df2 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
result = df1.sub(df2, axis=0)
print(result)
114-6-3、结果输出
# 114、pandas.Series.sub方法
# 114-1、基本用法
# a    4
# b    4
# c    4
# dtype: int64# 114-2、使用level参数
# letters  numbers
# A        1           9
#          2          18
# B        1          27
#          2          36
# dtype: int64# 114-3、使用fill_value参数
# a    4.0
# b    4.0
# c   -3.0
# dtype: float64# 114-4、使用axis参数(主要适用于DataFrame)
#     A   B
# 0   9  27
# 1  18  36
115、pandas.Series.mul方法
115-1、语法
# 115、pandas.Series.mul方法
pandas.Series.mul(other, level=None, fill_value=None, axis=0)
Return Multiplication of series and other, element-wise (binary operator mul).Equivalent to series * other, but with support to substitute a fill_value for missing data in either one of the inputs.Parameters:
other
Series or scalar value
level
int or name
Broadcast across a level, matching Index values on the passed MultiIndex level.fill_value
None or float value, default None (NaN)
Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing.axis
{0 or ‘index’}
Unused. Parameter needed for compatibility with DataFrame.Returns:
Series
The result of the operation.
115-2、参数

115-2-1、other(必须)乘数,可以是与当前Series对象长度相同的Series、DataFrame或一个标量值。如果是DataFrame,会对每列进行逐元素的乘法操作。

115-2-2、level(可选,默认值为None)如果当前Series或other有多层索引(MultiIndex),level参数用于指定在哪一层索引上对齐,这样可以在指定层级上进行逐元素乘法运算,而不是在所有层级上。

115-2-3、fill_value(可选,默认值为None)当other的某些索引值在当前Series中不存在时,使用fill_value来填补这些缺失值,这样,fill_value代替了缺失的数据参与计算。

115-2-4、axis(可选,默认值为0)主要在DataFrame上有效,用于指定操作的轴;在Series上,通常没有必要设置这个参数,因为Series只有一个轴(轴0)。

115-3、功能

        用于执行元素级的乘法操作。具体来说,它会将Series中的每个元素与另一个序列(Series或兼容的数组类型,如NumPy数组)中的对应元素相乘。如果不存在对应元素(比如两个Series的索引不完全匹配),则可以通过fill_value参数来指定一个填充值,以便进行乘法操作。

115-4、返回值

        返回一个新的Series,其中包含原始Series和other参数指定的序列(或数组)之间元素级乘法的结果。如果两个输入序列的索引不完全匹配,并且指定了fill_value,则结果Series的索引将是两个输入序列索引的并集,缺失值将用fill_value替换以进行乘法操作。

115-5、说明

        无

115-6、用法
115-6-1、数据准备
115-6-2、代码示例
# 115、pandas.Series.mul方法
# 115-1、基本用法
import pandas as pd
s1 = pd.Series([2, 3, 4], index=['a', 'b', 'c'])
s2 = pd.Series([5, 6, 7], index=['a', 'b', 'c'])
result = s1.mul(s2)
print(result, end='\n\n')# 115-2、使用level参数
import pandas as pd
arrays = [['A', 'A', 'B', 'B'], [1, 2, 1, 2]]
index = pd.MultiIndex.from_arrays(arrays, names=('letters', 'numbers'))
s1 = pd.Series([10, 20, 30, 40], index=index)
s2 = pd.Series([2, 3, 4, 5], index=index)
result = s1.mul(s2, level='letters')
print(result, end='\n\n')# 115-3、使用fill_value参数
import pandas as pd
s1 = pd.Series([1, 2], index=['a', 'b'])
s2 = pd.Series([10, 20, 30], index=['a', 'b', 'c'])
result = s1.mul(s2, fill_value=1)
print(result, end='\n\n')# 115-4、使用axis参数(主要适用于DataFrame)
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
df2 = pd.DataFrame({'A': [10, 20], 'B': [30, 40]})
result = df1.mul(df2, axis=0)
print(result)
115-6-3、结果输出
# 115、pandas.Series.mul方法
# 115-1、基本用法
# a    10
# b    18
# c    28
# dtype: int64# 115-2、使用level参数
# letters  numbers
# A        1           20
#          2           60
# B        1          120
#          2          200
# dtype: int64# 115-3、使用fill_value参数
# a    10.0
# b    40.0
# c    30.0
# dtype: float64# 115-4、使用axis参数(主要适用于DataFrame)
#     A    B
# 0  10   90
# 1  40  160

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/47233.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

几种常用排序算法

1 基本概念 排序是处理数据的一种最常见的操作,所谓排序就是将数据按某字段规律排列,所谓的字段就是数据节点的其中一个属性。比如一个班级的学生,其字段就有学号、姓名、班级、分数等等,我们既可以针对学号排序,也可…

OpenGL-ES 学习(7) ---- VBO EBO 和 VAO

目录 VBO(Vertex Buffer Object)EBO(Element Buffer Object)VAO(Vertex Array Object) VBO(Vertex Buffer Object) EBO(Element Buffer Object) VBO(Vertex Buffer Object) 实际是指顶点缓冲器对象 在 opengl-es 2.0 的编程中,用于绘制图元的顶点数据是从 CPU 传…

暑假第一周学习内容-ZARA仿写

仿写ZARA总结 文章目录 仿写ZARA总结前言无限轮播图分栏控制器与UIScrollViewUIScorllView的协议部分UISegmentedControl的协议部分 自定义cell 前言 本文主要是用来总结仿写ZARA中遇到的一些问题,以及ZARA中学习到的一些新知识。 无限轮播图 这里我们先给出无限…

使用Windows Linux 子系统安装 Tensorflow,并使用GPU环境

在Microsoft Store商店安装Ubuntu 20.04 使用 nvidia-smi 命令查看GPU信息,查看支持的CUDA版本,这里最高支持11.7 安装cuda工具集 进入官网:CUDA Toolkit Archive | NVIDIA Developer,现在对应版本,点击 配置平台&…

LeNet实验 四分类 与 四分类变为多个二分类

目录 1. 划分二分类 2. 训练独立的二分类模型 3. 二分类预测结果代码 4. 二分类预测结果 5 改进训练模型 6 优化后 预测结果代码 7 优化后预测结果 8 训练四分类模型 9 预测结果代码 10 四分类结果识别 1. 划分二分类 可以根据不同的类别进行多个划分,以…

科研绘图系列:R语言分割小提琴图(Split-violin)

介绍 分割小提琴图(Split-violin plot)是一种数据可视化工具,它结合了小提琴图(violin plot)和箱线图(box plot)的特点。小提琴图是一种展示数据分布的图形,它通过在箱线图的两侧添加曲线来表示数据的密度分布,曲线的宽度表示数据点的密度。而分割小提琴图则是将小提…

绿色算力|暴雨服务器用芯片筑起“十四五”转型新篇章

面对全球气候变化、技术革新以及能源转型的新形势,发展低碳、高效的绿色算力不仅是顺应时代的要求,更是我国建设数字基础设施和展现节能减碳大国担当的重要命题,在此背景下也要求在提升算力规模和性能的同时,积极探索推动算力基础…

【iOS】APP仿写——网易云音乐

网易云音乐 启动页发现定时器控制轮播图UIButtonConfiguration 发现换头像 我的总结 启动页 这里我的启动页是使用Xcode自带的启动功能,将图片放置在LaunchScreen中即可。这里也可以通过定时器控制,来实现启动的效果 效果图: 这里放一篇大…

31_MobileViT网络讲解

VIT:https://blog.csdn.net/qq_51605551/article/details/140445491?spm1001.2014.3001.5501 1.1 简介 MobileVIT是“Mobile Vision Transformer”的简称,是一种专门为移动设备设计的高效视觉模型。它结合了Transformer架构的优点与移动优先的设计原则&#xff0…

在eclipse中导入本地的jar包配置Junit环境步骤(包含Junit中的方法一直标红的解决方法)

搭建JUnit环境 一、配置环境 跟上一篇的那种方法不一样,直接Add to Build Path 是先将jar包复制到项目的lib目录下,然后直接添加 选定项目>>>右键>>>Bulid Path>>>Add Libraries>>>Configure Build Path(配置构建路…

python—爬虫爬取电影页面实例

下面是一个简单的爬虫实例,使用Python的requests库来发送HTTP请求,并使用lxml库来解析HTML页面内容。这个爬虫的目标是抓取一个电影网站,并提取每部电影的主义部分。 首先,确保你已经安装了requests和lxml库。如果没有安装&#x…

Fast Planner规划算法(一)—— Fast Planner前端

本系列文章用于回顾学习记录Fast-Planner规划算法的相关内容,【本系列博客写于2023年9月,共包含四篇文章,现在进行补发第一篇,其余几篇文章将在近期补发】 一、Fast Planner前端 Fast Planner的轨迹规划部分一共分为三个模块&…

4.基础知识-数据库技术基础

基础知识 一、数据库基本概念1、数据库系统基础知识2、三级模式-两级映像3、数据库设计4、数据模型:4.1 E-R模型★4.2 关系模型★ 5、关系代数 二、规范化和并发控制1、函数依赖2、键与约束3、范式★3.1 第一范式1NF实例3.2 第二范式2NF3.3 第三范式3NF3.4 BC范式BC…

rockchip的yolov5 rknn python推理分析

rockchip的yolov5 rknn推理分析 对于rockchip给出的这个yolov5后处理代码的分析,本人能力十分有限,可能有的地方描述的很不好,欢迎大家和我一起讨论,指出我的错误!!! RKNN模型输出 将官方的Y…

直方图的最大长方形面积

前提知识:单调栈基础题-CSDN博客 子数组的最大值-CSDN博客 题目描述: 给定一个非负数(0和正数),代表直方图,返回直方图的最大长方形面积,比如,arr {3, 2, 4, 2, 5}&#xff0c…

景区导航导览系统:基于AR技术+VR技术的功能效益全面解析

在数字化时代背景下,游客对旅游体验的期望不断提升。游客们更倾向于使用手机作为旅行的贴身助手,不仅因为它能提供实时、精准的导航服务,更在于其融合AR(增强现实)、VR(虚拟现实)等前沿技术&…

十三、网络编程正则表达式设计模式(模块23)

网络编程&正则表达式&设计模式 模块23_网络编程&正则表达式&设计模式第一章.网络编程1.软件结构2.服务器概念3.通信三要素4.UDP协议编程4.1.客户端(发送端)4.2.服务端(接收端) 5.TCP协议编程4.1.编写客户端4.2.编写服务端 6.文件上传6.1.文件上传客户端以及服务…

【开发踩坑】 MySQL不支持特殊字符(表情)插入问题

背景 线上功能报错: Cause:java.sql.SQLException:Incorrect string value:xFO\x9F\x9FxBO for column commentat row 1 uncategorized SQLException; SQL state [HY000]:error code [1366]排查 初步觉得是编码问题(utf8 — utf8mb4) 参考上…

Leetcode 2520. 统计能整除数字的位数

问题描述: 给你一个整数 num ,返回 num 中能整除 num 的数位的数目。 如果满足 nums % val 0 ,则认为整数 val 可以整除 nums 。 示例 1: 输入:num 7 输出:1 解释:7 被自己整除&#xff0…

浅谈芯片验证中的仿真运行之 timescale (五)提防陷阱

一 仿真单位 timeunit 我们知道,当我们的代码中写清楚延时语句时,若不指定时间单位,则使用此单位; 例如: `timescale 1ns/1ps 则 #15 语句表示delay15ns; 例:如下代码,module a 的timescale是1ns/1ps, module b 是1ps/1ps; module b中的clk,频率是由输入参…