【AI绘画教程】Stable Diffusion 1.5 vs 2

在本文中,我们将总结稳定扩散 1 与稳定扩散 2 辩论中的所有要点。我们将在第一部分中查看这些差异存在的实际原因,但如果您想直接了解实际差异,您可以跳下否定提示部分。让我们开始吧!

在这里插入图片描述

Stable Diffusion 2.1 发布与1.5相比,2.1旨在解决2.0的许多相对缺点。本文的内容与理解 Stable Diffusion 1 与 2 仍然相关,但读者应确保额外阅读附加的 Stable Diffusion 2.1 部分以了解全貌。

OpenCLIP

Stable Diffusion 2 所做的最重要的转变是替换了文本编码器。Stable Diffusion 1 使用 OpenAI 的 CLIP,这是一个开源模型,可以学习标题描述图像的程度。虽然模型本身是开源的,但训练 CLIP 的数据集很重要,它不是公开的

Stable Diffusion 2 改用 OpenCLIP,这是 CLIP 的开源版本,它是使用已知数据集训练的——LAION-5B 的一个美学子集,可以过滤掉 NSFW 图像。Stability AI表示,OpenCLIP“大大提高了生成图像的质量”,事实上,在指标上优于未发布的CLIP版本。

为什么这很重要

撇开这些模型的相对性能不谈,从 CLIP 到 OpenCLIP 的转变是 Stable Diffusion 1 和 Stable Diffusion 2 之间许多差异的根源

特别是,许多 Stable Diffusion 2 的用户声称它不能像 Stable Diffusion 1 那样代表名人或艺术风格,尽管 Stable Diffusion 2 的训练数据没有被故意过滤以删除艺术家。这种差异源于这样一个事实,即CLIP的训练数据比LAION数据集有更多的名人和艺术家。由于CLIP的数据集不向公众开放,因此无法仅使用LAION数据集恢复相同的功能。换言之,Stable Diffusion 1 的许多规范提示方法对于 Stable Diffusion 2 来说几乎已经过时了。

这意味着什么

这种向完全开源、开放数据模型的改变标志着 Stable Diffusion 故事的重要转变。对 Stable Diffusion 2 进行微调并构建人们希望看到的功能将落在开源社区的肩上,但这实际上是 Stable Diffusion ab initio 的意图——一个由社区驱动的、完全开放的项目。虽然一些用户目前可能对 Stable Diffusion 2 的相对性能感到失望,但 StabilityAI 团队已经花费了超过 100 万 A100 小时来构建一个坚实的基础。

此外,虽然创建者没有明确提及,但这种从使用 CLIP 的转变可能会为项目贡献者提供一些保护,防止潜在的责任问题,考虑到即将到来的知识产权诉讼浪潮,这很重要。

考虑到这个背景,现在是时候讨论 Stable Diffusion 1 和 2 之间的实际区别了。

Negative Prompts

我们首先检查负面提示,与 SD 1 相比,它似乎对 Stable Diffusion(SD) 2 的强劲性能更重要,如下所示:

在这里插入图片描述
现在让我们更详细地看一下负面提示。

Simple Prompt

首先,我们将提示“无边池”提供给 Stable Diffusion 1.5 和 Stable Diffusion 2,没有负面提示。显示了每个模型的三张图像,其中每列对应于不同的随机种子。

在这里插入图片描述

prompt: "infinity pool"
size: 512x512
guidance scale: 12
steps: 50
sampler: DDIM

正如我们所看到的,Stable Diffusion 1.5 总体上似乎比 Stable Diffusion 2 表现更好。在SD 2中,最左边的图像有一个贴片,与图像不匹配,而最右边的图像几乎是不连贯的。

现在,我们以相同的方式从相同的起始噪声生成图像,这次使用负提示。我们添加了否定提示“丑陋、平铺、画得不好的手、画得不好的脚、画得不好的脸、出框、突变、突变、额外的四肢、额外的腿、额外的手臂、毁容、变形、斗鸡眼、身体出框、模糊、糟糕的艺术、糟糕的解剖学、模糊、文本、水印、颗粒状”(ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy, blurred, text, watermark, grainy),这是 Emad Mostaque 使用的否定提示。

添加否定提示后,SD 1.5 通常表现更好,尽管中间图像的标题对齐方式可能较差。对于 SD 2,改进更为剧烈,尽管整体性能仍然不如 SD 1.5

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/46116.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络和安全操作

一、编辑文件 文本编辑器有很多,比如图形模式的gedit、OpenOffice 等,文本模式下的编辑器有vi、vim(vi的增强版本)等。vi和vim是我们在Linux中最常用的编辑器。 gedit:类似于windows下的记事本,很方便的去…

AI 大事件:超级明星 Andrej Karpathy 创立AI教育公司 Eureka Labs

🧠 AI 大事件:超级明星 Andrej Karpathy 创立AI教育公司 Eureka Labs 摘要 Andrej Karpathy 作为前 OpenAI 联合创始人、Tesla AI 团队负责人,他的专业性和实力备受瞩目。Karpathy 对 AI 的普及和教育充满热情,从 YouTube 教程到…

两年经验前端带你重学前端框架必会的ajax+node.js+webpack+git等技术 Day1

黑马程序员前端AJAX入门到实战全套教程,包含学前端框架必会的(ajaxnode.jswebpackgit),一套全覆盖 Day1 你好,我是Qiuner. 为帮助别人少走弯路和记录自己编程学习过程而写博客 这是我的 github https://github.com/Qiuner ⭐️ ​…

【算法/天梯赛训练】天梯赛模拟题集

L1-009 N个数求和 #include <iostream> #include <algorithm>using namespace std;typedef long long ll; const int N 105;typedef struct node {ll x, y; }node; node a[N];ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a; }int main() {int n;cin >>…

《昇思25天学习打卡营第25天|第9天》

今天是打卡的第九天&#xff0c;今天学习的是使用静态图加速这门课程&#xff0c;从他的背景学起&#xff1a;AI编译框架分为两种运行模式&#xff0c;分别是动态图模式和静态图模式&#xff0c;动态图模式特点&#xff1a;计算图的构建和计算同时发生&#xff0c;缺点&#xf…

如何追查一个packet在linux 系统哪里丢失

要想追一个包在系统哪里丢失了&#xff0c; 就要了解 一个应用层的包在送出时 要经历那些 检查点 和被丢掉的点。 1. 在传输层&#xff0c;如果是 tcp 包 会有contrack 的 buf 的限制 可能会导致 packets 的丢失。 > 检查办法&#xff1a;查看dmesg日志有报错&#xff1a;k…

MySQL数据库慢查询日志、SQL分析、数据库诊断

1 数据库调优维度 业务需求&#xff1a;勇敢地对不合理的需求说不系统架构&#xff1a;做架构设计的时候&#xff0c;应充分考虑业务的实际情况&#xff0c;考虑好数据库的各种选择(读写分离?高可用?实例个数?分库分表?用什么数据库?)SQL及索引&#xff1a;根据需求编写良…

Java Web常见框架寻找路由技巧

在Java Web代码审计中&#xff0c;寻找和识别路由是很关键的部分。通过注册的路由可以找到当前应用对应的Controller&#xff0c;其作为MVC架构中的一个组件&#xff0c;可以说是每个用户交互的入口点。简单介绍下Java Web中常见框架&#xff08;Spring Web、Jersey&#xff09…

十、Java集合 ★ ✔(模块18-20)【泛型、通配符、List、Set、TreeSet、自然排序和比较器排序、Collections、可变参数、Map】

day05 泛型,数据结构,List,Set 今日目标 泛型使用 数据结构 List Set 1 泛型 1.1 泛型的介绍 ★ 泛型是一种类型参数&#xff0c;专门用来保存类型用的 最早接触泛型是在ArrayList&#xff0c;这个E就是所谓的泛型了。使用ArrayList时&#xff0c;只要给E指定某一个类型…

【Vue3】4个比较重要的设计模式!!

大家好,我是CodeQi! 一位热衷于技术分享的码仔。 在我投身于前端开发的职业生涯期间,曾有一次承接了一个大型项目的维护工作。此项目运用的是 Vue 框架,然而其代码结构紊乱不堪,可维护性极度糟糕😫。 这使我深刻领会到,理解并运用 Vue 中的重要设计模式是何等关键! …

对LinkedList ,单链表和双链表的理解

一.ArrayList的缺陷 二.链表 三.链表部分相关oj面试题 四.LinkedList的模拟实现 五.LinkedList的使用 六.ArrayList和LinkedList的区别 一.ArrayList的缺陷: 1. ArrayList底层使用 数组 来存储元素&#xff0c;如果不熟悉可以来再看看&#xff1a; ArrayList与顺序表-CSDN…

一些常见的网络故障

&#x1f4d1;打牌 &#xff1a; da pai ge的个人主页 &#x1f324;️个人专栏 &#xff1a; da pai ge的博客专栏 ☁️宝剑锋从磨砺出&#xff0c;梅花香自苦寒来 ☁️运维工程师的职责&#xff1a;监…

【iOS】——ARC源码探究

一、ARC介绍 ARC的全称Auto Reference Counting. 也就是自动引用计数。使用MRC时开发者不得不花大量的时间在内存管理上&#xff0c;并且容易出现内存泄漏或者release一个已被释放的对象&#xff0c;导致crash。后来&#xff0c;Apple引入了ARC。使用ARC&#xff0c;开发者不再…

BUUCTF逆向wp [HDCTF2019]Maze

第一步 查壳&#xff0c;本题是32位&#xff0c;有壳&#xff0c;进行脱壳。 第二步 这里的 jnz 指令会实现一个跳转&#xff0c;并且下面的0EC85D78Bh被标红了&#xff0c;应该是一个不存在的地址&#xff0c;这些东西就会导致IDA无法正常反汇编出原始代码&#xff0c;也称…

启智畅想火车类集装箱号码识别技术,软硬件解决方案

集装箱号码识别需求&#xff1a; 实时检测车皮号、火车底盘号码、集装箱号码&#xff0c;根据火车类型分为以下三种情况&#xff1a; 1、纯车皮&#xff0c;只检测车皮号&#xff1b; 2、火车拉货箱&#xff08;半车皮&#xff09;&#xff0c;检测车皮号集装箱号码&#xff1b…

如何从0搭建一个Ai智体day01

&#x1f4da;《AI破局行动&#xff5c;AI智能体&#xff08;coze&#xff09;实战手册》&#xff1a; https://d16rg8unadx.feishu.cn/wiki/XQESwHW5HiPFlrkZbkqc0Xp7nEb 说明 这个是授权访问的&#xff0c;想学习加我 微信/ Github:** watchpoints &#x1f4fa;Day1-大圣直播…

玩转HarmonyOS NEXT之常用布局三

轮播&#xff08;Swiper&#xff09; Swiper组件提供滑动轮播显示的能力。Swiper本身是一个容器组件&#xff0c;当设置了多个子组件后&#xff0c;可以对这些子组件进行轮播显示。通常&#xff0c;在一些应用首页显示推荐的内容时&#xff0c;需要用到轮播显示的能力。 针对…

Xcode 16 beta3 真机调试找不到 Apple Watch 的尝试解决

很多小伙伴们想用 Xcode 在 Apple Watch 真机上调试运行 App 时却发现&#xff1a;在 Xcode 设备管理器中压根找不到对应的 Apple Watch 设备。 大家是否已将 Apple Watch 和 Mac 都重启一万多遍了&#xff0c;还是束手无策。 Apple Watch not showing in XCodeApple Watch wo…

NineData全面支持PostgreSQL可视化表结构设计

“PostgreSQL 是最像 Oracle 的开源关系型数据库“&#xff0c;也正因为如此&#xff0c;很多企业都青睐 PostgreSQL&#xff0c;拿它当成 Oracle 的替代品。所以毫无疑问&#xff0c;目前 PostgreSQL 在企业中非常常见。 对于直接接触 PostgreSQL 的开发人员而言&#xff0c;…

快速排序及归并排序的实现与排序的稳定性

目录 快速排序 一. 快速排序递归的实现方法 1. 左右指针法 步骤思路 为什么要让end先走&#xff1f; 2. 挖坑法 步骤思路 3. 前后指针法 步骤思路 二. 快速排序的时间和空间复杂度 1. 时间复杂度 2. 空间复杂度 三. 快速排序的优化方法 1. 三数取中优化 2. 小区…