MQ基础1

对应B站视频:

MQ入门-01.MQ课程介绍_哔哩哔哩_bilibili

微服务一旦拆分,必然涉及到服务之间的相互调用,目前我们服务之间调用采用的都是基于OpenFeign的调用。这种调用中,调用者发起请求后需要等待服务提供者执行业务返回结果后,才能继续执行后面的业务。也就是说调用者在调用过程中处于阻塞状态,因此我们称这种调用方式为同步调用,也可以叫同步通讯。但在很多场景下,我们可能需要采用异步通讯的方式,为什么呢?

我们先来看看什么是同步通讯和异步通讯。如图:

解读:

  • 同步通讯:就如同打视频电话,双方的交互都是实时的。因此同一时刻你只能跟一个人打视频电话。

  • 异步通讯:就如同发微信聊天,双方的交互不是实时的,你不需要立刻给对方回应。因此你可以多线操作,同时跟多人聊天。

两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发微信可以同时与多个人收发微信,但是往往响应会有延迟。

所以,如果我们的业务需要实时得到服务提供方的响应,则应该选择同步通讯(同步调用)。而如果我们追求更高的效率,并且不需要实时响应,则应该选择异步通讯(异步调用)。

同步调用的方式我们已经学过了,之前的OpenFeign调用就是。但是:

  • 异步调用又该如何实现?

  • 哪些业务适合用异步调用来实现呢?

通过今天的学习你就能明白这些问题了。

1.初识MQ

1.1.同步调用

之前说过,我们现在基于OpenFeign的调用都属于是同步调用,那么这种方式存在哪些问题呢?

举个例子,我们以昨天留给大家作为作业的余额支付功能为例来分析,首先看下整个流程:

目前我们采用的是基于OpenFeign的同步调用,也就是说业务执行流程是这样的:

  • 支付服务需要先调用用户服务完成余额扣减

  • 然后支付服务自己要更新支付流水单的状态

  • 然后支付服务调用交易服务,更新业务订单状态为已支付

三个步骤依次执行。

这其中就存在3个问题:

第一拓展性差

我们目前的业务相对简单,但是随着业务规模扩大,产品的功能也在不断完善。

在大多数电商业务中,用户支付成功后都会以短信或者其它方式通知用户,告知支付成功。假如后期产品经理提出这样新的需求,你怎么办?是不是要在上述业务中再加入通知用户的业务?

某些电商项目中,还会有积分或金币的概念。假如产品经理提出需求,用户支付成功后,给用户以积分奖励或者返还金币,你怎么办?是不是要在上述业务中再加入积分业务、返还金币业务?

。。。

最终你的支付业务会越来越臃肿:

也就是说每次有新的需求,现有支付逻辑都要跟着变化,代码经常变动,不符合开闭原则,拓展性不好。

第二性能下降

由于我们采用了同步调用,调用者需要等待服务提供者执行完返回结果后,才能继续向下执行,也就是说每次远程调用,调用者都是阻塞等待状态。最终整个业务的响应时长就是每次远程调用的执行时长之和:

假如每个微服务的执行时长都是50ms,则最终整个业务的耗时可能高达300ms,性能太差了。

第三,级联失败

由于我们是基于OpenFeign调用交易服务、通知服务。当交易服务、通知服务出现故障时,整个事务都会回滚,交易失败。

这其实就是同步调用的级联失败问题。

但是大家思考一下,我们假设用户余额充足,扣款已经成功,此时我们应该确保支付流水单更新为已支付,确保交易成功。毕竟收到手里的钱没道理再退回去吧。因此,这里不能因为短信通知、更新订单状态失败而回滚整个事务。

综上,同步调用的方式存在下列问题:

  • 拓展性差

  • 性能下降

  • 级联失败

而要解决这些问题,我们就必须用异步调用的方式来代替同步调用

1.2.异步调用

异步调用方式其实就是基于消息通知的方式,一般包含三个角色:

  • 消息发送者:投递消息的人,就是原来的调用方

  • 消息Broker:管理、暂存、转发消息,你可以把它理解成微信服务器

  • 消息接收者:接收和处理消息的人,就是原来的服务提供方

在异步调用中,发送者不再直接同步调用接收者的业务接口,而是发送一条消息投递给消息Broker。然后接收者根据自己的需求从消息Broker那里订阅消息。每当发送方发送消息后,接受者都能获取消息并处理。

这样,发送消息的人和接收消息的人就完全解耦了。

还是以余额支付业务为例:

除了扣减余额、更新支付流水单状态以外,其它调用逻辑全部取消。而是改为发送一条消息到Broker。而相关的微服务都可以订阅消息通知,一旦消息到达Broker,则会分发给每一个订阅了的微服务,处理各自的业务。

假如产品经理提出了新的需求,比如要在支付成功后更新用户积分。支付代码完全不用变更,而仅仅是让积分服务也订阅消息即可:

不管后期增加了多少消息订阅者,作为支付服务来讲,执行问扣减余额、更新支付流水状态后,发送消息即可。业务耗时仅仅是这三部分业务耗时,仅仅100ms,大大提高了业务性能。

另外,不管是交易服务、通知服务,还是积分服务,他们的业务与支付关联度低。现在采用了异步调用,解除了耦合,他们即便执行过程中出现了故障,也不会影响到支付服务。

综上,异步调用的优势包括:

  • 耦合度更低

  • 性能更好

  • 业务拓展性强

  • 故障隔离,避免级联失败

当然,异步通信也并非完美无缺,它存在下列缺点:

  • 完全依赖于Broker的可靠性、安全性和性能

  • 架构复杂,后期维护和调试麻烦

1.3.技术选型

消息Broker,目前常见的实现方案就是消息队列(MessageQueue),简称为MQ.

目比较常见的MQ实现:

  • ActiveMQ

  • RabbitMQ

  • RocketMQ

  • Kafka

几种常见MQ的对比:

RabbitMQActiveMQRocketMQKafka
公司/社区RabbitApache阿里Apache
开发语言ErlangJavaJavaScala&Java
协议支持AMQP,XMPP,SMTP,STOMPOpenWire,STOMP,REST,XMPP,AMQP自定义协议自定义协议
可用性一般
单机吞吐量一般非常高
消息延迟微秒级毫秒级毫秒级毫秒以内
消息可靠性一般一般

追求可用性:Kafka、 RocketMQ 、RabbitMQ

追求可靠性:RabbitMQ、RocketMQ

追求吞吐能力:RocketMQ、Kafka

追求消息低延迟:RabbitMQ、Kafka

据统计,目前国内消息队列使用最多的还是RabbitMQ,再加上其各方面都比较均衡,稳定性也好,因此我们课堂上选择RabbitMQ来学习。

2.RabbitMQ

RabbitMQ是基于Erlang语言开发的开源消息通信中间件,官网地址:

RabbitMQ: One broker to queue them all | RabbitMQ

接下来,我们就学习它的基本概念和基础用法。

2.1.安装

我们同样基于Docker来安装RabbitMQ,使用下面的命令即可:

docker run \-e RABBITMQ_DEFAULT_USER=itheima \-e RABBITMQ_DEFAULT_PASS=123321 \-v mq-plugins:/plugins \--name mq \--hostname mq \-p 15672:15672 \-p 5672:5672 \--network hm-net\-d \rabbitmq:3.8-management

 如果拉取镜像困难的话,文章结尾给大家准备好了镜像,利用docker load命令加载:

可以看到在安装命令中有两个映射的端口:

  • 15672:RabbitMQ提供的管理控制台的端口

  • 5672:RabbitMQ的消息发送处理接口

安装完成后,我们访问 http://192.168.150.101:15672即可看到管理控制台。首次访问需要登录,默认的用户名和密码在配置文件中已经指定了。

登录后即可看到管理控制台总览页面:

RabbitMQ对应的架构如图:

其中包含几个概念:

  • publisher:生产者,也就是发送消息的一方

  • consumer:消费者,也就是消费消息的一方

  • queue:队列,存储消息。生产者投递的消息会暂存在消息队列中,等待消费者处理

  • exchange:交换机,负责消息路由。生产者发送的消息由交换机决定投递到哪个队列。

  • virtual host:虚拟主机,起到数据隔离的作用。每个虚拟主机相互独立,有各自的exchange、queue

上述这些东西都可以在RabbitMQ的管理控制台来管理,下一节我们就一起来学习控制台的使用。

2.2.收发消息

2.2.1.交换机

我们打开Exchanges选项卡,可以看到已经存在很多交换机:

我们点击任意交换机,即可进入交换机详情页面。仍然会利用控制台中的publish message 发送一条消息: 这里是由控制台模拟了生产者发送的消息。由于没有消费者存在,最终消息丢失了,这样说明交换机没有存储消息的能力。

2.2.2.队列

我们打开Queues选项卡,新建一个队列:

 

再以相同的方式,创建一个队列,密码为hello.queue2,最终队列列表如下: 

此时,我们再次向amq.fanout交换机发送一条消息。会发现消息依然没有到达队列!!

怎么回事呢?

发送到交换机的消息,只会路由到与其绑定的队列,因此仅仅创建队列是不够的,我们还需要将其与交换机绑定。

2.2.3.绑定关系

点击Exchanges选项卡,点击amq.fanout交换机,进入交换机详情页,然后点击Bindings菜单,在表单中填写要绑定的队列名称:

相同的方式,将hello.queue2也绑定到改交换机。

最终,绑定结果如下:

 

2.2.4.发送消息

再次回到exchange页面,找到刚刚绑定的amq.fanout,点击进入详情页,再次发送一条消息:

回到Queues页面,可以发现hello.queue中已经有一条消息了:

点击队列名称,进入详情页,查看队列详情,这次我们点击get message:

可以看到消息到达队列了: 

这个时候如果有消费者监听了MQ的hello.queue1hello.queue2队列,自然就能接收到消息了。

2.3.数据隔离

2.3.1.用户管理

点击Admin选项卡,首先会看到RabbitMQ控制台的用户管理界面:

这里的用户都是RabbitMQ的管理或运维人员。目前只有安装RabbitMQ时添加的itheima这个用户。仔细观察用户表格中的字段,如下:

  • Nameitheima,也就是用户名

  • Tagsadministrator,说明itheima用户是超级管理员,拥有所有权限

  • Can access virtual host/,可以访问的virtual host,这里的/是默认的virtual host

对于小型企业而言,出于成本考虑,我们通常只会搭建一套MQ集群,公司内的多个不同项目同时使用。这个时候为了避免互相干扰, 我们会利用virtual host的隔离特性,将不同项目隔离。一般会做两件事情:

  • 给每个项目创建独立的运维账号,将管理权限分离。

  • 给每个项目创建不同的virtual host,将每个项目的数据隔离。

比如,我们给黑马商城创建一个新的用户,命名为hmall

你会发现此时hmall用户没有任何virtual host的访问权限:

接下来我们就来授权。 

2.3.2.virtual host

我们先退出登录:

切换到刚刚创建的hmall用户登录,然后点击Virtual Hosts菜单,进入virtual host管理页:

可以看到目前只有一个默认的virtual host,名字为 /

我们可以给黑马商城项目创建一个单独的virtual host,而不是使用默认的/

创建完成后如图:

由于我们是登录hmall账户后创建的virtual host,因此回到users菜单,你会发现当前用户已经具备了对/hmall这个virtual host的访问权限了:

此时,点击页面右上角的virtual host下拉菜单,切换virtual host/hmall 然后再次查看queues选项卡,会发现之前的队列已经看不到了:

这就是基于virtual host 的隔离效果。

3.SpringAMQP

将来我们开发业务功能的时候,肯定不会在控制台收发消息,而是应该基于编程的方式。由于RabbitMQ采用了AMQP协议,因此它具备跨语言的特性。任何语言只要遵循AMQP协议收发消息,都可以与RabbitMQ交互。并且RabbitMQ官方也提供了各种不同语言的客户端。

但是,RabbitMQ官方提供的Java客户端编码相对复杂,一般生产环境下我们更多会结合Spring来使用。而Spring的官方刚好基于RabbitMQ提供了这样一套消息收发的模板工具:SpringAMQP。并且还基于SpringBoot对其实现了自动装配,使用起来非常方便。

SpringAmqp的官方地址:Spring AMQP

SpringAMQP提供了三个功能:

  • 自动声明队列、交换机及其绑定关系

  • 基于注解的监听器模式,异步接收消息

  • 封装了RabbitTemplate工具,用于发送消息

这一章我们就一起学习一下,如何利用SpringAMQP实现对RabbitMQ的消息收发。

3.1.导入Demo工程

在文章结尾给大家提供了一个Demo工程,方便我们学习SpringAMQP的使用:

将其复制到你的工作空间,然后用Idea打开,项目结构如图:

包括三部分:

  • mq-demo:父工程,管理项目依赖

  • publisher:消息的发送者

  • consumer:消息的消费者

在mq-demo这个父工程中,已经配置好了SpringAMQP相关的依赖:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>cn.itcast.demo</groupId><artifactId>mq-demo</artifactId><version>1.0-SNAPSHOT</version><modules><module>publisher</module><module>consumer</module></modules><packaging>pom</packaging><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.7.12</version><relativePath/></parent><properties><maven.compiler.source>8</maven.compiler.source><maven.compiler.target>8</maven.compiler.target></properties><dependencies><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></dependency><!--AMQP依赖,包含RabbitMQ--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId></dependency><!--单元测试--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId></dependency></dependencies>
</project>

因此,子工程中就可以直接使用SpringAMQP了。

3.2.快速入门

在之前的案例中,我们都是经过交换机发送消息到队列,不过有时候为了测试方便,我们也可以直接向队列发送消息,跳过交换机。

在入门案例中,我们就演示这样的简单模型,如图:

也就是:

  • publisher直接发送消息到队列

  • 消费者监听并处理队列中的消息

注意:这种模式一般测试使用,很少在生产中使用。

为了方便测试,我们现在控制台新建一个队列:simple.queue 

添加成功: 接下来,我们就可以利用Java代码收发消息了。

3.2.1.消息发送

首先配置MQ地址,在publisher服务的application.yml中添加配置:

spring:rabbitmq:host: 192.168.22.88 # 你的虚拟机IPport: 5672 # 端口virtual-host: /hmall # 虚拟主机username: hmall # 用户名password: 123 # 密码

然后在publisher服务中编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送:

package com.itheima.publisher.amqp;import org.junit.jupiter.api.Test;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;@SpringBootTest
public class SpringAmqpTest {@Autowiredprivate RabbitTemplate rabbitTemplate;@Testpublic void testSimpleQueue() {// 队列名称String queueName = "simple.queue";// 消息String message = "hello, spring amqp!";// 发送消息rabbitTemplate.convertAndSend(queueName, message);}
}

打开控制台,可以看到消息已经发送到队列中:

接下来,我们再来实现消息接收。

3.2.2.消息接收

首先配置MQ地址,在consumer服务的application.yml中添加配置:

spring:rabbitmq:host: 192.168.22.88 # 你的虚拟机IPport: 5672 # 端口virtual-host: /hmall # 虚拟主机username: hmall # 用户名password: 123 # 密码

然后在consumer服务的com.itheima.consumer.listener包中新建一个类SpringRabbitListener,代码如下:

package com.itheima.consumer.listener;import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;@Component
public class SpringRabbitListener {// 利用RabbitListener来声明要监听的队列信息// 将来一旦监听的队列中有了消息,就会推送给当前服务,调用当前方法,处理消息。// 可以看到方法体中接收的就是消息体的内容@RabbitListener(queues = "simple.queue")public void listenSimpleQueueMessage(String msg) throws InterruptedException {System.out.println("spring 消费者接收到消息:【" + msg + "】");}
}

3.2.3.测试

启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息。最终consumer收到消息:

3.3.WorkQueues模型

Work queues,任务模型。简单来说就是多个消费者绑定到一个队列,共同消费队列中的消息

当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。

此时就可以使用work 模型,多个消费者共同处理消息处理,消息处理的速度就能大大提高了。

接下来,我们就来模拟这样的场景。

首先,我们在控制台创建一个新的队列,命名为work.queue

3.3.1.消息发送

这次我们循环发送,模拟大量消息堆积现象。

在publisher服务中的SpringAmqpTest类中添加一个测试方法:

/*** workQueue* 向队列中不停发送消息,模拟消息堆积。*/
@Test
public void testWorkQueue() throws InterruptedException {// 队列名称String queueName = "work.queue";// 消息String message = "hello, message_";for (int i = 0; i < 50; i++) {// 发送消息,每20毫秒发送一次,相当于每秒发送50条消息rabbitTemplate.convertAndSend(queueName, message + i);Thread.sleep(20);}
}

3.3.2.消息接收

要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:

@RabbitListener(queues = "work.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(20);
}@RabbitListener(queues = "work.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(200);
}

注意到这两消费者,都设置了Thead.sleep,模拟任务耗时:

  • 消费者1 sleep了20毫秒,相当于每秒钟处理50个消息

  • 消费者2 sleep了200毫秒,相当于每秒处理5个消息

3.3.3.测试

启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。

最终结果如下:

消费者2........接收到消息:【hello, message_0】13:27:28.854272300
消费者1接收到消息:【hello, message_1】13:27:28.866843
消费者1接收到消息:【hello, message_3】13:27:28.910834700
消费者1接收到消息:【hello, message_5】13:27:28.955471200
消费者1接收到消息:【hello, message_7】13:27:28.999427900
消费者1接收到消息:【hello, message_9】13:27:29.052203100
消费者2........接收到消息:【hello, message_2】13:27:29.057720700
消费者1接收到消息:【hello, message_11】13:27:29.094622500
消费者1接收到消息:【hello, message_13】13:27:29.134576400
消费者1接收到消息:【hello, message_15】13:27:29.178579
消费者1接收到消息:【hello, message_17】13:27:29.225458300
消费者2........接收到消息:【hello, message_4】13:27:29.258751700
消费者1接收到消息:【hello, message_19】13:27:29.268782600
消费者1接收到消息:【hello, message_21】13:27:29.310326
消费者1接收到消息:【hello, message_23】13:27:29.355328200
消费者1接收到消息:【hello, message_25】13:27:29.404193400
消费者1接收到消息:【hello, message_27】13:27:29.451027300
消费者2........接收到消息:【hello, message_6】13:27:29.462536500
消费者1接收到消息:【hello, message_29】13:27:29.489696700
消费者1接收到消息:【hello, message_31】13:27:29.536279400
消费者1接收到消息:【hello, message_33】13:27:29.579879800
消费者1接收到消息:【hello, message_35】13:27:29.623404100
消费者2........接收到消息:【hello, message_8】13:27:29.665144700
消费者1接收到消息:【hello, message_37】13:27:29.670203800
消费者1接收到消息:【hello, message_39】13:27:29.716523400
消费者1接收到消息:【hello, message_41】13:27:29.762430400
消费者1接收到消息:【hello, message_43】13:27:29.807719700
消费者1接收到消息:【hello, message_45】13:27:29.851229900
消费者2........接收到消息:【hello, message_10】13:27:29.868609700
消费者1接收到消息:【hello, message_47】13:27:29.900501200
消费者1接收到消息:【hello, message_49】13:27:29.943365800
消费者2........接收到消息:【hello, message_12】13:27:30.068846800
消费者2........接收到消息:【hello, message_14】13:27:30.271521800
消费者2........接收到消息:【hello, message_16】13:27:30.471542
消费者2........接收到消息:【hello, message_18】13:27:30.676032400
消费者2........接收到消息:【hello, message_20】13:27:30.878225100
消费者2........接收到消息:【hello, message_22】13:27:31.081266400
消费者2........接收到消息:【hello, message_24】13:27:31.284766100
消费者2........接收到消息:【hello, message_26】13:27:31.487893
消费者2........接收到消息:【hello, message_28】13:27:31.689919200
消费者2........接收到消息:【hello, message_30】13:27:31.892238800
消费者2........接收到消息:【hello, message_32】13:27:32.094483300
消费者2........接收到消息:【hello, message_34】13:27:32.295227700
消费者2........接收到消息:【hello, message_36】13:27:32.498640300
消费者2........接收到消息:【hello, message_38】13:27:32.702505100
消费者2........接收到消息:【hello, message_40】13:27:32.904806600
消费者2........接收到消息:【hello, message_42】13:27:33.107721900
消费者2........接收到消息:【hello, message_44】13:27:33.310408400
消费者2........接收到消息:【hello, message_46】13:27:33.511858400
消费者2........接收到消息:【hello, message_48】13:27:33.712508900

可以看到消费者1和消费者2竟然每人消费了25条消息:

  • 消费者1很快完成了自己的25条消息

  • 消费者2却在缓慢的处理自己的25条消息。

也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。导致1个消费者空闲,另一个消费者忙的不可开交。没有充分利用每一个消费者的能力,最终消息处理的耗时远远超过了1秒。这样显然是有问题的。

3.3.4.能者多劳

在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:

spring:rabbitmq:listener:simple:prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息

再次测试,发现结果如下:

消费者2........接收到消息:【hello, message_0】13:30:19.798834700
消费者1接收到消息:【hello, message_1】13:30:19.817134500
消费者1接收到消息:【hello, message_2】13:30:19.841788
消费者1接收到消息:【hello, message_3】13:30:19.865491
消费者1接收到消息:【hello, message_4】13:30:19.887660700
消费者1接收到消息:【hello, message_5】13:30:19.911784100
消费者1接收到消息:【hello, message_6】13:30:19.935059300
消费者1接收到消息:【hello, message_7】13:30:19.959279200
消费者1接收到消息:【hello, message_8】13:30:19.981466700
消费者2........接收到消息:【hello, message_9】13:30:20.002149200
消费者1接收到消息:【hello, message_10】13:30:20.016352100
消费者1接收到消息:【hello, message_11】13:30:20.039829200
消费者1接收到消息:【hello, message_12】13:30:20.062955
消费者1接收到消息:【hello, message_13】13:30:20.085630800
消费者1接收到消息:【hello, message_14】13:30:20.107801800
消费者1接收到消息:【hello, message_15】13:30:20.134063400
消费者1接收到消息:【hello, message_16】13:30:20.155275300
消费者1接收到消息:【hello, message_17】13:30:20.179395100
消费者1接收到消息:【hello, message_18】13:30:20.200618500
消费者2........接收到消息:【hello, message_19】13:30:20.218727900
消费者1接收到消息:【hello, message_20】13:30:20.243433900
消费者1接收到消息:【hello, message_21】13:30:20.266193400
消费者1接收到消息:【hello, message_22】13:30:20.290405
消费者1接收到消息:【hello, message_23】13:30:20.311534800
消费者1接收到消息:【hello, message_24】13:30:20.336404100
消费者1接收到消息:【hello, message_25】13:30:20.361637200
消费者1接收到消息:【hello, message_26】13:30:20.385411
消费者1接收到消息:【hello, message_27】13:30:20.407505400
消费者2........接收到消息:【hello, message_28】13:30:20.423395300
消费者1接收到消息:【hello, message_29】13:30:20.439001
消费者1接收到消息:【hello, message_30】13:30:20.462126600
消费者1接收到消息:【hello, message_31】13:30:20.485764200
消费者1接收到消息:【hello, message_32】13:30:20.509009700
消费者1接收到消息:【hello, message_33】13:30:20.536239400
消费者1接收到消息:【hello, message_34】13:30:20.559640
消费者1接收到消息:【hello, message_35】13:30:20.583492600
消费者1接收到消息:【hello, message_36】13:30:20.605689700
消费者2........接收到消息:【hello, message_37】13:30:20.628424
消费者1接收到消息:【hello, message_38】13:30:20.643664
消费者1接收到消息:【hello, message_39】13:30:20.668690600
消费者1接收到消息:【hello, message_40】13:30:20.693530500
消费者1接收到消息:【hello, message_41】13:30:20.719437900
消费者1接收到消息:【hello, message_42】13:30:20.743191800
消费者1接收到消息:【hello, message_43】13:30:20.768960500
消费者1接收到消息:【hello, message_44】13:30:20.792175200
消费者1接收到消息:【hello, message_45】13:30:20.817870100
消费者2........接收到消息:【hello, message_46】13:30:20.831696900
消费者1接收到消息:【hello, message_47】13:30:20.840242
消费者1接收到消息:【hello, message_48】13:30:20.863963500
消费者1接收到消息:【hello, message_49】13:30:20.885220800

可以发现,由于消费者1处理速度较快,所以处理了更多的消息;消费者2处理速度较慢,只处理了6条消息。而最终总的执行耗时也在1秒左右,大大提升。

正所谓能者多劳,这样充分利用了每一个消费者的处理能力,可以有效避免消息积压问题。

3.3.5.总结

Work模型的使用:

  • 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理

  • 通过设置prefetch来控制消费者预取的消息数量

  • 3.4.交换机类型

    在之前的两个测试案例中,都没有交换机,生产者直接发送消息到队列。而一旦引入交换机,消息发送的模式会有很大变化:

可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:

  • Publisher:生产者,不再发送消息到队列中,而是发给交换机

  • Exchange:交换机,一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。

  • Queue:消息队列也与以前一样,接收消息、缓存消息。不过队列一定要与交换机绑定。

  • Consumer:消费者,与以前一样,订阅队列,没有变化

Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!

交换机的类型有四种:

  • Fanout:广播,将消息交给所有绑定到交换机的队列。我们最早在控制台使用的正是Fanout交换机

  • Direct:订阅,基于RoutingKey(路由key)发送给订阅了消息的队列

  • Topic:通配符订阅,与Direct类似,只不过RoutingKey可以使用通配符

  • Headers:头匹配,基于MQ的消息头匹配,用的较少。

课堂中,我们讲解前面的三种交换机模式。

3.5.Fanout交换机

Fanout,英文翻译是扇出,我觉得在MQ中叫广播更合适。

在广播模式下,消息发送流程是这样的:

  • 1) 可以有多个队列

  • 2) 每个队列都要绑定到Exchange(交换机)

  • 3) 生产者发送的消息,只能发送到交换机

  • 4) 交换机把消息发送给绑定过的所有队列

  • 5) 订阅队列的消费者都能拿到消息

我们的计划是这样的:

  • 创建一个名为 hmall.fanout的交换机,类型是Fanout

  • 创建两个队列fanout.queue1fanout.queue2,绑定到交换机hmall.fanout

3.5.1.声明队列和交换机

在控制台创建队列fanout.queue1:

在创建一个队列fanout.queue2 然后再创建一个交换机:

 然后绑定两个队列到交换机:

 

3.5.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testFanoutExchange() {// 交换机名称String exchangeName = "hmall.fanout";// 消息String message = "hello, everyone!";rabbitTemplate.convertAndSend(exchangeName, "", message);
}

3.5.3.消息接收

在consumer服务的SpringRabbitListener中添加两个方法,作为消费者:

@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg) {System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg) {System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}

3.5.4.总结

交换机的作用是什么?

  • 接收publisher发送的消息

  • 将消息按照规则路由到与之绑定的队列

  • 不能缓存消息,路由失败,消息丢失

  • FanoutExchange的会将消息路由到每个绑定的队列

3.6.Direct交换机

在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。

在Direct模型下:

  • 队列与交换机的绑定,不能是任意绑定了,而是要指定一个RoutingKey(路由key)

  • 消息的发送方在 向 Exchange发送消息时,也必须指定消息的 RoutingKey

  • Exchange不再把消息交给每一个绑定的队列,而是根据消息的Routing Key进行判断,只有队列的Routingkey与消息的 Routing key完全一致,才会接收到消息

案例需求如图

  1. 声明一个名为hmall.direct的交换机

  2. 声明队列direct.queue1,绑定hmall.directbindingKeybludred

  3. 声明队列direct.queue2,绑定hmall.directbindingKeyyellowred

  4. consumer服务中,编写两个消费者方法,分别监听direct.queue1和direct.queue2

  5. 在publisher中编写测试方法,向hmall.direct发送消息

3.6.1.声明队列和交换机

首先在控制台声明两个队列direct.queue1direct.queue2,这里不再展示过程:

然后声明一个direct类型的交换机,命名为hmall.direct:

然后使用redblue作为key,绑定direct.queue1hmall.direct 

同理,使用redyellow作为key,绑定direct.queue2hmall.direct,步骤略,最终结果: 

3.6.2.消息接收

在consumer服务的SpringRabbitListener中添加方法:

@RabbitListener(queues = "direct.queue1")
public void listenDirectQueue1(String msg) {System.out.println("消费者1接收到direct.queue1的消息:【" + msg + "】");
}@RabbitListener(queues = "direct.queue2")
public void listenDirectQueue2(String msg) {System.out.println("消费者2接收到direct.queue2的消息:【" + msg + "】");
}

3.6.3.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testSendDirectExchange() {// 交换机名称String exchangeName = "direct";// 消息String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "red", message);
}

由于使用的red这个key,所以两个消费者都收到了消息:

我们再切换为blue这个key:

@Test
public void testSendDirectExchange() {// 交换机名称String exchangeName = "hmall.direct";// 消息String message = "最新报道,哥斯拉是居民自治巨型气球,虚惊一场!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "blue", message);
}

 你会发现,只有消费者1收到了消息:

3.6.4.总结

描述下Direct交换机与Fanout交换机的差异?

  • Fanout交换机将消息路由给每一个与之绑定的队列

  • Direct交换机根据RoutingKey判断路由给哪个队列

  • 如果多个队列具有相同的RoutingKey,则与Fanout功能类似

3.7.Topic交换机

3.7.1.说明

Topic类型的ExchangeDirect相比,都是可以根据RoutingKey把消息路由到不同的队列。

只不过Topic类型Exchange可以让队列在绑定BindingKey 的时候使用通配符!

BindingKey 一般都是有一个或多个单词组成,多个单词之间以.分割,例如: item.insert

通配符规则:

  • #:匹配一个或多个词

  • *:匹配不多不少恰好1个词

举例:

  • item.#:能够匹配item.spu.insert 或者 item.spu

  • item.*:只能匹配item.spu

图示:

假如此时publisher发送的消息使用的RoutingKey共有四种:

  • china.news 代表有中国的新闻消息;

  • china.weather 代表中国的天气消息;

  • japan.news 则代表日本新闻

  • japan.weather 代表日本的天气消息;

解释:

  • topic.queue1:绑定的是china.# ,凡是以 china.开头的routing key 都会被匹配到,包括:

    • china.news

    • china.weather

  • topic.queue2:绑定的是#.news ,凡是以 .news结尾的 routing key 都会被匹配。包括:

    • china.news

    • japan.news

接下来,我们就按照上图所示,来演示一下Topic交换机的用法。

首先,在控制台按照图示例子创建队列、交换机,并利用通配符绑定队列和交换机。此处步骤略。最终结果如下:

3.7.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

/*** topicExchange*/
@Test
public void testSendTopicExchange() {// 交换机名称String exchangeName = "hmall.topic";// 消息String message = "喜报!孙悟空大战哥斯拉,胜!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
}

 

3.7.3.消息接收

在consumer服务的SpringRabbitListener中添加方法:

@RabbitListener(queues = "topic.queue1")
public void listenTopicQueue1(String msg){System.out.println("消费者1接收到topic.queue1的消息:【" + msg + "】");
}@RabbitListener(queues = "topic.queue2")
public void listenTopicQueue2(String msg){System.out.println("消费者2接收到topic.queue2的消息:【" + msg + "】");
}

3.7.4.总结

描述下Direct交换机与Topic交换机的差异?

  • Topic交换机接收的消息RoutingKey必须是多个单词,以 . 分割

  • Topic交换机与队列绑定时的bindingKey可以指定通配符

  • #:代表0个或多个词

  • *:代表1个词

3.8.声明队列和交换机

在之前我们都是基于RabbitMQ控制台来创建队列、交换机。但是在实际开发时,队列和交换机是程序员定义的,将来项目上线,又要交给运维去创建。那么程序员就需要把程序中运行的所有队列和交换机都写下来,交给运维。在这个过程中是很容易出现错误的。

因此推荐的做法是由程序启动时检查队列和交换机是否存在,如果不存在自动创建。

3.8.1.基本API

SpringAMQP提供了一个Queue类,用来创建队列:

SpringAMQP还提供了一个Exchange接口,来表示所有不同类型的交换机: 我们可以自己创建队列和交换机,不过SpringAMQP还提供了ExchangeBuilder来简化这个过程:

 而在绑定队列和交换机时,则需要使用BindingBuilder来创建Binding对象:

3.8.2.fanout示例

在consumer中创建一个类,声明队列和交换机:

package com.itheima.consumer.config;import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.FanoutExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class FanoutConfig {/*** 声明交换机* @return Fanout类型交换机*/@Beanpublic FanoutExchange fanoutExchange(){return new FanoutExchange("hmall.fanout");}/*** 第1个队列*/@Beanpublic Queue fanoutQueue1(){return new Queue("fanout.queue1");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);}/*** 第2个队列*/@Beanpublic Queue fanoutQueue2(){return new Queue("fanout.queue2");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);}
}

3.8.2.direct示例

direct模式由于要绑定多个KEY,会非常麻烦,每一个Key都要编写一个binding:

package com.itheima.consumer.config;import org.springframework.amqp.core.*;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class DirectConfig {/*** 声明交换机* @return Direct类型交换机*/@Beanpublic DirectExchange directExchange(){return ExchangeBuilder.directExchange("hmall.direct").build();}/*** 第1个队列*/@Beanpublic Queue directQueue1(){return new Queue("direct.queue1");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue1WithRed(Queue directQueue1, DirectExchange directExchange){return BindingBuilder.bind(directQueue1).to(directExchange).with("red");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue1WithBlue(Queue directQueue1, DirectExchange directExchange){return BindingBuilder.bind(directQueue1).to(directExchange).with("blue");}/*** 第2个队列*/@Beanpublic Queue directQueue2(){return new Queue("direct.queue2");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue2WithRed(Queue directQueue2, DirectExchange directExchange){return BindingBuilder.bind(directQueue2).to(directExchange).with("red");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue2WithYellow(Queue directQueue2, DirectExchange directExchange){return BindingBuilder.bind(directQueue2).to(directExchange).with("yellow");}
}

3.8.4.基于注解声明

基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。

例如,我们同样声明Direct模式的交换机和队列:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue1"),exchange = @Exchange(name = "hmall.direct", type = ExchangeTypes.DIRECT),key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){System.out.println("消费者1接收到direct.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue2"),exchange = @Exchange(name = "hmall.direct", type = ExchangeTypes.DIRECT),key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){System.out.println("消费者2接收到direct.queue2的消息:【" + msg + "】");
}

是不是简单多了。

再试试Topic模式:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue1"),exchange = @Exchange(name = "hmall.topic", type = ExchangeTypes.TOPIC),key = "china.#"
))
public void listenTopicQueue1(String msg){System.out.println("消费者1接收到topic.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue2"),exchange = @Exchange(name = "hmall.topic", type = ExchangeTypes.TOPIC),key = "#.news"
))
public void listenTopicQueue2(String msg){System.out.println("消费者2接收到topic.queue2的消息:【" + msg + "】");
}

3.9.消息转换器

Spring的消息发送代码接收的消息体是一个Object:

而在数据传输时,它会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。

只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:

  • 数据体积过大

  • 有安全漏洞

  • 可读性差

我们来测试一下。

3.9.1.测试默认转换器

1)创建测试队列

首先,我们在consumer服务中声明一个新的配置类:

利用@Bean的方式创建一个队列,

具体代码:

package com.itheima.consumer.config;import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class MessageConfig {@Beanpublic Queue objectQueue() {return new Queue("object.queue");}
}

注意,这里我们先不要给这个队列添加消费者,我们要查看消息体的格式。

重启consumer服务以后,该队列就会被自动创建出来了:

2)发送消息

我们在publisher模块的SpringAmqpTest中新增一个消息发送的代码,发送一个Map对象:

@Test
public void testSendMap() throws InterruptedException {// 准备消息Map<String,Object> msg = new HashMap<>();msg.put("name", "柳岩");msg.put("age", 21);// 发送消息rabbitTemplate.convertAndSend("object.queue", msg);
}

 发送消息后查看控制台:

可以看到消息格式非常不友好。

3.9.2.配置JSON转换器

显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。

publisherconsumer两个服务中都引入依赖:

<dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId><version>2.9.10</version>
</dependency>

注意,如果项目中引入了spring-boot-starter-web依赖,则无需再次引入Jackson依赖。

配置消息转换器,在publisherconsumer两个服务的启动类中添加一个Bean即可:

@Bean
public MessageConverter messageConverter(){// 1.定义消息转换器Jackson2JsonMessageConverter jackson2JsonMessageConverter = new Jackson2JsonMessageConverter();// 2.配置自动创建消息id,用于识别不同消息,也可以在业务中基于ID判断是否是重复消息jackson2JsonMessageConverter.setCreateMessageIds(true);return jackson2JsonMessageConverter;
}

消息转换器中添加的messageId可以便于我们将来做幂等性判断。

此时,我们到MQ控制台删除object.queue中的旧的消息。然后再次执行刚才的消息发送的代码,到MQ的控制台查看消息结构:

3.9.3.消费者接收Object

我们在consumer服务中定义一个新的消费者,publisher是用Map发送,那么消费者也一定要用Map接收,格式如下:

@RabbitListener(queues = "object.queue")
public void listenSimpleQueueMessage(Map<String, Object> msg) throws InterruptedException {System.out.println("消费者接收到object.queue消息:【" + msg + "】");
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/45765.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

求立方体面积体积以及判断(c++)

代码&#xff1a; #include<iostream> using namespace std;class Cube { public:void setL(int l){m_L l;}int getL(){return m_L;}void setW(int w){m_W w;}int getW(){return m_W;}void setH(int h){m_H h;}int getH(){return m_H;}int calculateS(){return 2 * (…

netdata 监控软件安装与学习

netdata官网 netdata操作文档 前言&#xff1a; netdata是一款监控软件&#xff0c;可以监控多台主机也可以监控单台主机&#xff0c;监控单台主机时&#xff0c;开箱即用&#xff0c;web ui很棒。 环境&#xff1a; [root192 ~]# cat /etc/system-release CentOS Linux rel…

GD32F407VET6新建固件库工程并下载运行

零、所需文件及环境&#xff1a; 1、固件库的压缩包 GD32F4xx_Firmware_Library_V3.2.0.7z 官网 2、GD32F407的keil支持包 官网 兆易创新GigaDevice-资料下载兆易创新GD32 MCU 2、 keilkilll.bat 用来删除编译过程文件 可以不要 &#xff08;原子、野火资料里都有&…

算法金 | 来了,pandas 2.0

大侠幸会&#xff0c;在下全网同名「算法金」 0 基础转 AI 上岸&#xff0c;多个算法赛 Top 「日更万日&#xff0c;让更多人享受智能乐趣」 今日 210/10000 Pandas 是一个强大的数据分析库&#xff0c;广泛应用于科学研究、金融分析、商业智能等领域。它提供了高效的数据结构…

[WUSTCTF2020]level4题解 入土为安的第三天

二叉树 Practice my Data Structure code..... Typing....Struct.....char....*left....*right............emmmmm...OK! Traversal! Traversal type 1:2f0t02T{hcsiI_SwA__r7Ee} Traversal type 2:20f0Th{2tsIS_icArE}e7__w Traversal type 3: //type3(&x[22]); No w…

C++基础篇(2)

目录 前言 1.缺省参数 2.函数重载 2.1函数重载的基本规则 ​编辑2.2注意事项 2.3 重载解析&#xff08;Overload Resolution&#xff09;--补充内容 3.引用 3.1引用的概念和定义 3.2引用的特性 3.3引用的使用 3.4const引用 4.指针和引用的关系 结束语 前言 上节小编…

感应灯光画纯电路开源版本

前言 之前那版灯光画用的从垃圾佬淘的电路板拼出来的&#xff0c;功能不全&#xff0c;显示效果不太好而且无法固定到相框上&#xff0c;这次改版用的嘉立创smt&#xff0c;贴了5片板子&#xff08;19元&#xff09;&#xff0c;功能上的改进是加了无极触摸调光、添加了黄白两…

debian固定ip

debian固定ip 前言 安装好的Debian系统后&#xff0c;为了确保每次登陆的ip不变&#xff0c;需要固定 方法 命令如下 ip addr | grep inet因为有有线网和无线网 2 种连接方式&#xff0c;因此需要区别。 其中 enp 的是有线&#xff0c;wlp 的是无线 查看网关 IP 命令如下 …

互联网末法时代的一些思考

这篇文章也是临时起意&#xff0c;很长一段时间没写个人思考类的文章&#xff0c;主要原因也是时间完全不够用。随着年龄的增长&#xff0c;看待问题的视角也逐渐发生变化&#xff0c;例如从关注现象到关注动机&#xff0c;从关注结果到关注起因&#xff0c;2021年的时代我曾经…

java面向对象进阶篇--static

一、前言 java进阶篇已经开始了&#xff0c;先从面向对象开始&#xff0c;由于时间原因今天就只更新了static部分&#xff0c;内容上特别详细&#xff0c;一些特别的注意事项也在反复的提醒大家。 温馨提示一下&#xff0c;往后的java篇会越来越难&#xff0c;希望大家能够坚…

P2p网络性能测度及监测系统模型

P2p网络性能测度及监测系统模型 网络IP性能参数 IP包传输时延时延变化误差率丢失率虚假率吞吐量可用性连接性测度单向延迟测度单向分组丢失测度往返延迟测度 OSI中的位置-> 网络层 用途 面相业务的网络分布式计算网络游戏IP软件电话流媒体分发多媒体通信 业务质量 通过…

python编程:从入门到实践(第三版) 笔记

文章目录 资源网站:https://www.ituring.com.cn/book/3038配置VSCode推荐资源网站推荐资源网址 资源网站:https://www.ituring.com.cn/book/3038 配置VSCode 推荐资源网站 推荐资源网址 英文版主页&#xff1a; https://ehmatthes.github.io/pcc_3e 中文版主页&#xff1a; h…

上市公司企业共同机构所有权数据、机构交叉持股数据(2005-2023)

数据来源&#xff1a;基础数据来源于上市公司企业年报 时间跨度&#xff1a;2005-2023年 数据范围&#xff1a;企业层面 数据指标&#xff1a; 参考《中国工业经济》杜勇&#xff08;2021&#xff09;老师的做法&#xff0c;从 3 个维度构造指标反映上市公司共同机构所有权&…

Vue和Element UI 路由跳转

在Vue.js中&#xff0c;使用Vue Router可以方便地实现页面之间的路由跳转。Element UI是一个基于Vue 2.0的桌面端组件库&#xff0c;它本身并不直接提供路由跳转的功能&#xff0c;但你可以在使用Element UI的Vue项目中结合Vue Router来实现这一功能。 以下是一个基于Vue和Ele…

Proxyman for Mac v5.6.1 抓包调试工具

Mac分享吧 文章目录 效果一、下载软件二、功能三、开始安装1、双击运行软件&#xff0c;将其从左侧拖入右侧文件夹中&#xff0c;等待安装完毕2、应用程序显示软件图标&#xff0c;表示安装成功 四、运行测试1、打开软件 安装完成&#xff01;&#xff01;&#xff01; 效果 一…

【华为OD笔试】2024D卷命题规律解读【分析300+场OD笔试考点总结】

可上 欧弟OJ系统 练习华子OD、大厂真题 绿色聊天软件戳 od1441了解算法冲刺训练&#xff08;备注【CSDN】否则不通过&#xff09; 文章目录 相关推荐阅读华为OD笔试2024D卷命题规律解读华为OD算法/大厂面试高频题算法练习冲刺训练 相关推荐阅读 【华为OD笔试】2024D卷机考套题…

C# Opencv实现本地以图搜图

地址&#xff1a;冯腾飞/本地以图搜图

Java面试八股之Redis哨兵机制

Redis哨兵机制 Redis Sentinel&#xff08;哨兵&#xff09;模式是一种高可用解决方案&#xff0c;用于监控和自动故障转移Redis主从集群。以下是对哨兵模式详细过程的描述&#xff1a; 1. 初始化与配置 部署哨兵节点&#xff1a;在不同的服务器上部署一个或多个Redis Sentin…

《算法笔记》总结No.7——二分(多例题详解版)

一.二分查找 目前有一个有序数列&#xff0c;举个例子&#xff0c;假设是1~1000&#xff0c;让我们去查找931这个数字&#xff0c;浅显且暴力的做法就是直接从头到尾遍历一遍&#xff0c;直到找到931为止。当n非常大&#xff0c;比如达到100w时&#xff0c;这是一个非常大的量级…

Linux 线程初步解析

1.线程概念 在一个程序里的一个执行路线就叫做线程&#xff08;thread&#xff09;。更准确的定义是&#xff1a;线程是“一个进程内部的控制序列。在linux中&#xff0c;由于线程和进程都具有id,都需要调度等等相似性&#xff0c;因此都可以用PCB来描述和控制,线程含有PCB&am…