Spark SQL----NULL语义
- 一、比较运算符中的空处理
- 二、逻辑运算符中的空处理
- 三、表达式中的空处理
- 3.1 null-intolerant表达式中的空处理
- 3.2 可以处理空值操作数的空处理表达式
- 3.3 内置聚合表达式中的空处理
- 四、WHERE、HAVING和JOIN子句中的条件表达式的空处理
- 五、在GROUP BY和DISTINCT中空处理
- 六、在ORDER BY中的空处理
- 七、UNION, INTERSECT, EXCEPT中的空处理
- 八、EXISTS 和NOT EXISTS 子查询中的空处理
- 九、IN 和 NOT IN 子查询中的空处理
表由一组行组成,每行包含一组列。列与数据类型相关联,表示实体的特定属性(例如,age 是一个名为person的实体的列)。有时,特定于行的列的值在该行出现时是未知的。在SQL中,这些值表示为NULL。本节详细介绍了在各种运算符、表达式和其他SQL构造中处理NULL值的语义。
下面说明了名为person的表的schema layout和数据。数据在年龄列中包含NULL值,该表将用于以下各节中的各种示例。
TABLE: person
Id | Name | Age |
---|---|---|
100 | Joe | 30 |
200 | Marry | NULL |
300 | Mike | 18 |
400 | Fred | 50 |
500 | Albert | NULL |
600 | Michelle | 30 |
700 | Dan | 50 |
一、比较运算符中的空处理
Apache spark支持标准的比较运算符,如“>”、“>=”、“=”、”<“和”<=“。当其中一个操作数或两个操作数都未知或为NULL时,这些运算符的结果为未知或NULL。为了比较NULL值的相等性,Spark提供了一个NULL安全的相等运算符(“<=>”),当其中一个操作数为NULL时,该运算符返回False,当两个操作数均为NULL时返回True。下表说明了当一个或两个操作数都为NULL时比较运算符的行为`:
Left Operand | Right Operand | > | >= | = | < | <= | <=> |
---|---|---|---|---|---|---|---|
NULL | Any value | NULL | NULL | NULL | NULL | NULL | False |
Any value | NULL | NULL | NULL | NULL | NULL | NULL | False |
NULL | NULL | NULL | NULL | NULL | NULL | NULL | True |
例子: |
-- Normal comparison operators return `NULL` when one of the operand is `NULL`.
SELECT 5 > null AS expression_output;
+-----------------+
|expression_output|
+-----------------+
| null|
+-----------------+-- Normal comparison operators return `NULL` when both the operands are `NULL`.
SELECT null = null AS expression_output;
+-----------------+
|expression_output|
+-----------------+
| null|
+-----------------+-- Null-safe equal operator return `False` when one of the operand is `NULL`
SELECT 5 <=> null AS expression_output;
+-----------------+
|expression_output|
+-----------------+
| false|
+-----------------+-- Null-safe equal operator return `True` when one of the operand is `NULL`
SELECT NULL <=> NULL;
+-----------------+
|expression_output|
+-----------------+
| true|
+-----------------+
二、逻辑运算符中的空处理
Spark支持标准逻辑运算符,如AND、OR和NOT。这些运算符将布尔表达式作为参数,并返回布尔值。
下表说明了当一个或两个操作数都为NULL时逻辑运算符的行为。
Left Operand | Right Operand | OR | AND |
---|---|---|---|
True | NULL | True | NULL |
False | NULL | NULL | False |
NULL | True | True | NULL |
NULL | False | NULL | False |
NULL | NULL | NULL | NULL |
operand | NOT |
---|---|
NULL | NULL |
例子:
-- Normal comparison operators return `NULL` when one of the operands is `NULL`.
SELECT (true OR null) AS expression_output;
+-----------------+
|expression_output|
+-----------------+
| true|
+-----------------+-- Normal comparison operators return `NULL` when both the operands are `NULL`.
SELECT (null OR false) AS expression_output
+-----------------+
|expression_output|
+-----------------+
| null|
+-----------------+-- Null-safe equal operator returns `False` when one of the operands is `NULL`
SELECT NOT(null) AS expression_output;
+-----------------+
|expression_output|
+-----------------+
| null|
+-----------------+
三、表达式中的空处理
比较运算符和逻辑运算符在Spark中被视为表达式。除了这两种表达式之外,Spark还支持其他形式的表达式,如函数表达式、强制转换表达式等。Spark中的表达式大致可分为:
- Null intolerant表达式
- 可以处理NULL值操作数的表达式
- 这些表达式的结果取决于表达式本身。
3.1 null-intolerant表达式中的空处理
当表达式的一个或多个参数为Null时,Null intolerant表达式返回Null,大多数表达式属于这一类。
例子:
SELECT concat('John', null) AS expression_output;
+-----------------+
|expression_output|
+-----------------+
| null|
+-----------------+SELECT positive(null) AS expression_output;
+-----------------+
|expression_output|
+-----------------+
| null|
+-----------------+SELECT to_date(null) AS expression_output;
+-----------------+
|expression_output|
+-----------------+
| null|
+-----------------+
3.2 可以处理空值操作数的空处理表达式
这类表达式被设计用来处理NULL值。表达式的结果取决于表达式本身。例如,函数表达式isnull在输入为空时返回true,在输入为非空时返回false,而函数coalesce返回其操作数列表中的第一个非null值。但是,coalesce在其所有操作数为NULL时返回NULL。下面是这类表达的不完整列表。
- COALESCE
- NULLIF
- IFNULL
- NVL
- NVL2
- ISNAN
- NANVL
- ISNULL
- ISNOTNULL
- ATLEASTNNONNULLS
- IN
例子:
SELECT isnull(null) AS expression_output;
+-----------------+
|expression_output|
+-----------------+
| true|
+-----------------+-- Returns the first occurrence of non `NULL` value.
SELECT coalesce(null, null, 3, null) AS expression_output;
+-----------------+
|expression_output|
+-----------------+
| 3|
+-----------------+-- Returns `NULL` as all its operands are `NULL`.
SELECT coalesce(null, null, null, null) AS expression_output;
+-----------------+
|expression_output|
+-----------------+
| null|
+-----------------+SELECT isnan(null) AS expression_output;
+-----------------+
|expression_output|
+-----------------+
| false|
+-----------------+
3.3 内置聚合表达式中的空处理
聚合函数通过处理一组输入行来计算单个结果。下面是聚合函数如何处理NULL值的规则。
- NULL值在所有聚合函数的处理过程中被忽略。
- 此规则的唯一例外是COUNT(*)函数。
- 当所有输入值为NULL或输入数据集为空时,一些聚合函数返回NULL。这些函数的列表如下:
- MAX
- MIN
- SUM
- AVG
- EVERY
- ANY
- SOME
例子:
-- `count(*)` does not skip `NULL` values.
SELECT count(*) FROM person;
+--------+
|count(1)|
+--------+
| 7|
+--------+-- `NULL` values in column `age` are skipped from processing.
SELECT count(age) FROM person;
+----------+
|count(age)|
+----------+
| 5|
+----------+-- `count(*)` on an empty input set returns 0. This is unlike the other
-- aggregate functions, such as `max`, which return `NULL`.
SELECT count(*) FROM person where 1 = 0;
+--------+
|count(1)|
+--------+
| 0|
+--------+-- `NULL` values are excluded from computation of maximum value.
SELECT max(age) FROM person;
+--------+
|max(age)|
+--------+
| 50|
+--------+-- `max` returns `NULL` on an empty input set.
SELECT max(age) FROM person where 1 = 0;
+--------+
|max(age)|
+--------+
| null|
+--------+
四、WHERE、HAVING和JOIN子句中的条件表达式的空处理
WHERE、HAVING操作符根据用户指定的条件过滤行。JOIN操作符用于根据连接条件组合来自两个表的行。对于所有这三种操作符,条件表达式都是布尔表达式,可以返回True、False或Unknown (NULL)。如果条件的结果为True,则表示“满足”。
例子:
-- Persons whose age is unknown (`NULL`) are filtered out from the result set.
SELECT * FROM person WHERE age > 0;
+--------+---+
| name|age|
+--------+---+
|Michelle| 30|
| Fred| 50|
| Mike| 18|
| Dan| 50|
| Joe| 30|
+--------+---+-- `IS NULL` expression is used in disjunction to select the persons
-- with unknown (`NULL`) records.
SELECT * FROM person WHERE age > 0 OR age IS NULL;
+--------+----+
| name| age|
+--------+----+
| Albert|null|
|Michelle| 30|
| Fred| 50|
| Mike| 18|
| Dan| 50|
| Marry|null|
| Joe| 30|
+--------+----+-- Person with unknown(`NULL`) ages are skipped from processing.
SELECT age, count(*) FROM person GROUP BY age HAVING max(age) > 18;
+---+--------+
|age|count(1)|
+---+--------+
| 50| 2|
| 30| 2|
+---+--------+-- A self join case with a join condition `p1.age = p2.age AND p1.name = p2.name`.
-- The persons with unknown age (`NULL`) are filtered out by the join operator.
SELECT * FROM person p1, person p2WHERE p1.age = p2.ageAND p1.name = p2.name;
+--------+---+--------+---+
| name|age| name|age|
+--------+---+--------+---+
|Michelle| 30|Michelle| 30|
| Fred| 50| Fred| 50|
| Mike| 18| Mike| 18|
| Dan| 50| Dan| 50|
| Joe| 30| Joe| 30|
+--------+---+--------+---+-- The age column from both legs of join are compared using null-safe equal which
-- is why the persons with unknown age (`NULL`) are qualified by the join.
SELECT * FROM person p1, person p2WHERE p1.age <=> p2.ageAND p1.name = p2.name;
+--------+----+--------+----+
| name| age| name| age|
+--------+----+--------+----+
| Albert|null| Albert|null|
|Michelle| 30|Michelle| 30|
| Fred| 50| Fred| 50|
| Mike| 18| Mike| 18|
| Dan| 50| Dan| 50|
| Marry|null| Marry|null|
| Joe| 30| Joe| 30|
+--------+----+--------+----+
五、在GROUP BY和DISTINCT中空处理
如章节一比较运算符中的空处理中所讨论的,两个NULL值不相等。但是,出于分组和不同处理的目的,将具有NULL数据的两个或多个值分组到同一个bucket中。这种行为符合SQL标准和其他企业数据库管理系统。
例子:
-- `NULL` values are put in one bucket in `GROUP BY` processing.
SELECT age, count(*) FROM person GROUP BY age;
+----+--------+
| age|count(1)|
+----+--------+
|null| 2|
| 50| 2|
| 30| 2|
| 18| 1|
+----+--------+-- All `NULL` ages are considered one distinct value in `DISTINCT` processing.
SELECT DISTINCT age FROM person;
+----+
| age|
+----+
|null|
| 50|
| 30|
| 18|
+----+
六、在ORDER BY中的空处理
Spark SQL在ORDER BY子句中支持空排序规范。Spark处理ORDER BY子句时,首先或最后放置所有NULL值,这取决于空排序规范。默认情况下,所有NULL值放在首位。
例子:
-- `NULL` values are shown at first and other values
-- are sorted in ascending way.
SELECT age, name FROM person ORDER BY age;
+----+--------+
| age| name|
+----+--------+
|null| Marry|
|null| Albert|
| 18| Mike|
| 30|Michelle|
| 30| Joe|
| 50| Fred|
| 50| Dan|
+----+--------+-- Column values other than `NULL` are sorted in ascending
-- way and `NULL` values are shown at the last.
SELECT age, name FROM person ORDER BY age NULLS LAST;
+----+--------+
| age| name|
+----+--------+
| 18| Mike|
| 30|Michelle|
| 30| Joe|
| 50| Dan|
| 50| Fred|
|null| Marry|
|null| Albert|
+----+--------+-- Columns other than `NULL` values are sorted in descending
-- and `NULL` values are shown at the last.
SELECT age, name FROM person ORDER BY age DESC NULLS LAST;
+----+--------+
| age| name|
+----+--------+
| 50| Fred|
| 50| Dan|
| 30|Michelle|
| 30| Joe|
| 18| Mike|
|null| Marry|
|null| Albert|
+----+--------+
七、UNION, INTERSECT, EXCEPT中的空处理
在集合操作的上下文中,以null-safe的方式比较NULL值是否相等。这意味着在比较行时,两个NULL值被认为是相等的,这与常规的EqualTo(=)操作符不同。
例子:
CREATE VIEW unknown_age SELECT * FROM person WHERE age IS NULL;-- Only common rows between two legs of `INTERSECT` are in the
-- result set. The comparison between columns of the row are done
-- in a null-safe manner.
SELECT name, age FROM personINTERSECTSELECT name, age from unknown_age;
+------+----+
| name| age|
+------+----+
|Albert|null|
| Marry|null|
+------+----+-- `NULL` values from two legs of the `EXCEPT` are not in output.
-- This basically shows that the comparison happens in a null-safe manner.
SELECT age, name FROM personEXCEPTSELECT age FROM unknown_age;
+---+--------+
|age| name|
+---+--------+
| 30| Joe|
| 50| Fred|
| 30|Michelle|
| 18| Mike|
| 50| Dan|
+---+--------+-- Performs `UNION` operation between two sets of data.
-- The comparison between columns of the row ae done in
-- null-safe manner.
SELECT name, age FROM personUNION SELECT name, age FROM unknown_age;
+--------+----+
| name| age|
+--------+----+
| Albert|null|
| Joe| 30|
|Michelle| 30|
| Marry|null|
| Fred| 50|
| Mike| 18|
| Dan| 50|
+--------+----+
八、EXISTS 和NOT EXISTS 子查询中的空处理
在Spark中,允许在WHERE子句中使用EXISTS和NOT EXISTS表达式。这些是返回TRUE或FALSE的布尔表达式。换句话说,EXISTS是一个成员条件,当它引用的子查询返回一行或多行时返回TRUE。类似地,NOT EXISTS是一个非成员条件,当从子查询返回no rows或zero rows时返回TRUE。这两个表达式不受子查询结果中存在NULL的影响。它们通常更快,因为它们可以转换为semijoins / anti-semijoins,而无需为null感知提供特殊规定。
例子:
-- Even if subquery produces rows with `NULL` values, the `EXISTS` expression
-- evaluates to `TRUE` as the subquery produces 1 row.
SELECT * FROM person WHERE EXISTS (SELECT null);
+--------+----+
| name| age|
+--------+----+
| Albert|null|
|Michelle| 30|
| Fred| 50|
| Mike| 18|
| Dan| 50|
| Marry|null|
| Joe| 30|
+--------+----+-- `NOT EXISTS` expression returns `FALSE`. It returns `TRUE` only when
-- subquery produces no rows. In this case, it returns 1 row.
SELECT * FROM person WHERE NOT EXISTS (SELECT null);
+----+---+
|name|age|
+----+---+
+----+---+-- `NOT EXISTS` expression returns `TRUE`.
SELECT * FROM person WHERE NOT EXISTS (SELECT 1 WHERE 1 = 0);
+--------+----+
| name| age|
+--------+----+
| Albert|null|
|Michelle| 30|
| Fred| 50|
| Mike| 18|
| Dan| 50|
| Marry|null|
| Joe| 30|
+--------+----+
九、IN 和 NOT IN 子查询中的空处理
在Spark中,允许在查询的WHERE子句中使用IN和NOT IN表达式。与EXISTS表达式不同,IN表达式可以返回TRUE、FALSE或UNKNOWN(NULL)值。从概念上讲,IN表达式在语义上等价于由disjunctive运算符(OR)分隔的一组相等条件。例如,c1 IN (1, 2, 3)在语义上等价于 (C1 = 1 OR c1 = 2 OR c1 = 3)。
就处理NULL值而言,语义可以从比较运算符(=)和逻辑运算符(OR)中的NULL值处理中推导出来。总之,以下是计算IN表达式结果的规则。
- 当在列表中找到有问题的非NULL值时,返回TRUE
- 当在列表中找不到非NULL值并且列表中不包含NULL值时,返回FALSE
- 当值为NULL,或者在列表中找不到非NULL值并且列表至少包含一个NULL值时,返回UNKNOWN
当列表包含NULL时,NOT IN总是返回UNKNOWN,与输入值无关。这是因为如果值不在包含NULL的列表中,IN将返回UNKNOWN,并且因为not UNKNOWN再次为UNKNOW。
例子:
-- The subquery has only `NULL` value in its result set. Therefore,
-- the result of `IN` predicate is UNKNOWN.
SELECT * FROM person WHERE age IN (SELECT null);
+----+---+
|name|age|
+----+---+
+----+---+-- The subquery has `NULL` value in the result set as well as a valid
-- value `50`. Rows with age = 50 are returned.
SELECT * FROM personWHERE age IN (SELECT age FROM VALUES (50), (null) sub(age));
+----+---+
|name|age|
+----+---+
|Fred| 50|
| Dan| 50|
+----+---+-- Since subquery has `NULL` value in the result set, the `NOT IN`
-- predicate would return UNKNOWN. Hence, no rows are
-- qualified for this query.
SELECT * FROM personWHERE age NOT IN (SELECT age FROM VALUES (50), (null) sub(age));
+----+---+
|name|age|
+----+---+
+----+---+