自然语言处理(NLP)与大语言模型(LLM) 主要差异

一、简述

        NLP 和 LLM 技术是大规模分析和生成人类语言的核心。随着它们的日益普及,区分 LLM 与 NLP 变得越来越重要。

        NLP 包含一套用于理解、操纵和生成人类语言的算法。自 20 世纪 50 年代诞生以来,NLP 已发展到分析文本关系的阶段。它使用词性标注、命名实体识别和情感分析方法。

        而以 OpenAI 的 ChatGPT 为例,LLM 利用深度学习对大量文本集进行训练。虽然它们可以模仿类似人类的文本,但它们对语言细微差别的理解有限。与专注于语言分析的 NLP 不同,LLM 主要生成文本。

二、NLP 中的关键技术

        NLP 可用于从拼写检查和自动更正到聊天机器人和语音助手的各种应用。旨在创建能够生成人类语言的算法。它弥合了数字系统与人类交流之间的鸿沟。这项技术为增强跨行业的数据分析和洞察铺平了道路。

        自然语言处理依靠各种过程使计算机能够产生人类语言:

        1、解析:该技术将句子分解为语法元素。它简化了机器的语言结构。它有助于识别词性、句子限制和句法连接。

        2、语义分析:超越简单的单词识别,掌握单词的含义和关系。这对于解释文本、习语和幽默的上下文至关重要。

        3、语音识别:将口语转换为书面文本,将音频转录为可读格式。

        4、自然语言生成:与语音识别相反,NLG 提供基于计算机数据模仿人类书写的文本。应用包括报告撰写、总结和起草信息。

        5、情感分析:通常用于监控社交媒体和管理品牌声誉。它评估文本的情感基调并分析客户反馈和市场趋势。

        6、机器翻译:可以将文本或语音从一种语言转换为另一种语言。

        7、命名实体识别:检测并分类文本中的重要信息,例如个人、地点和组织的名称。

        8、文本分类和归类:为文本分配标签,以便对大量数据进行排序和管理。这对于组织文档、电子邮件和在线内容非常有用。

三、大型语言模型 (LLM)

        大型语言模型 (LLM) 是用于理解和生成类似人类的文本的机器学习模型。它们旨在根据单词或句子前面的单词来预测单词或句子的可能性,从而生成连贯且上下文相关的文本。

        LLM 是早期 NLP 模型的演变。计算能力、数据可用性和机器学习技术的进步使它们成为可能。这些模型被输入大量文本数据(通常来自互联网),它们利用这些数据来学习语言模式、语法、世界事实,甚至实现推理能力。

        LLM 的主要功能是能够响应细微的指令并生成与人类书写的文本难以区分的文本。这使得它们被广泛用于各种应用中,最突出的是新一代人工智能聊天机器人,它们正在彻底改变人机交互。LLM 的其他应用包括文本摘要、翻译、编写原创内容和自动化客户服务。

四、LLM 与 NLP 五个主要区别

1、范围

        NLP 涵盖了处理人类语言的广泛模型和技术,而大型语言模型 (LLM) 则代表了该领域内的一种特定类型的模型。然而,从实际角度来看,LLM 在任务多功能性方面与传统 NLP 技术具有相似的范围。LLM 已经证明了能够处理几乎所有 NLP 任务的能力,从文本分类到机器翻译再到情感分析,这要归功于它们对各种数据集的广泛训练以及对语言模式的高级理解。

        LLM 的适应性源于其设计,这使得它们能够理解和生成类似人类的文本,使其适用于传统上依赖于专门的 NLP 模型的各种应用。例如,虽然 NLP 使用不同的模型来执行实体识别和摘要等任务,但 LLM 可以使用单个底层模型执行所有这些任务。但是,需要注意的是,虽然 LLM 用途广泛,但它们并不总是每项 NLP 任务最有效或最有效的选择,尤其是在需要特定的、狭义的解决方案时。

2、技术

        NLP 使用各种各样的技术,从基于规则的方法到机器学习和深度学习方法。这些技术应用于各种任务,例如词性标注、命名实体识别和语义角色标注等。而LLM主要使用深度学习来学习文本数据中的模式并预测文本序列。它们基于一种称为 Transformer 的神经网络架构,该架构使用自注意力机制来衡量句子中不同单词的重要性。这使它们能够更好地理解上下文并生成相关文本。

        LLM 已经取得了显著的成果,在各种 NLP 任务上的表现通常优于其他类型的模型。它们可以生成与人类相似的文本,这些文本具有上下文相关性、连贯性和创造性。这使得它们被广泛应用于从聊天机器人和虚拟助手到内容创建和语言翻译等各种应用。 然而,LLM 并非没有局限性。它们需要大量数据和巨大的计算能力来训练。它们还可能容易生成不准确、不安全或有偏见的内容,因为它们会从输入的数据中学习。如果没有具体的指导,这些模型就无法理解更广泛的背景或道德含义。 相比之下,NLP 涵盖了更广泛的技术和模型,其中一些可能更适合某些任务或应用。在许多情况下,传统的 NLP 模型可以比 LLM 更准确地解决自然语言问题,并且计算资源更少。

3、语言任务表现

        LLM 已经取得了显著的成果,在各种 NLP 任务上的表现通常优于其他类型的模型。它们可以生成与人类相似的文本,这些文本具有上下文相关性、连贯性和创造性。这使得它们被广泛应用于从聊天机器人和虚拟助手到内容创建和语言翻译等各种应用。

        然而,LLM 并非没有局限性。它们需要大量数据和巨大的计算能力来训练。它们还可能容易生成不准确、不安全或有偏见的内容,因为它们会从输入的数据中学习。如果没有具体的指导,这些模型就无法理解更广泛的背景或道德含义。 相比之下,NLP 涵盖了更广泛的技术和模型,其中一些可能更适合某些任务或应用。在许多情况下,传统的 NLP 模型可以比 LLM 更准确地解决自然语言问题,并且计算资源更少。

4、资源需求

        LLM 需要大量数据和计算资源才能有效运行。这主要是因为 LLM 旨在学习和推断数据背后的逻辑,这可能是一项复杂且资源密集型的任务。LLM 不仅在海量数据集上进行训练,而且还具有大量参数,最先进的模型的参数数量达到数十亿或数千亿。截至撰写本文时,培训新的 LLM 非常昂贵,超出了大多数组织的承受能力。

        大多数 NLP 模型都能够在与其特定问题领域相关的较小数据集上进行训练。此外,还有许多 NLP 模型在大型文本数据集上进行了预训练,开发新模型的研究人员可以利用他们的经验,使用迁移学习技术。在计算资源方面,简单的 NLP 模型(例如主题建模或实体提取)所需的资源只是训练和运行 LLM 所需资源的一小部分。基于神经网络的复杂模型需要更多的计算资源,但总体而言,与 LLM 相比,它们更便宜,也更容易训练。

5、适应性

        LLM 具有很强的适应性,因为它们旨在学习数据背后的逻辑,使其能够概括和适应新情况或数据集。这种适应性是 LLM 的一项强大功能,因为它使它们即使面对从未见过的数据也能做出准确的预测。 传统的 NLP 算法通常不太灵活。虽然 NLP 模型可以训练来理解和处理各种语言和方言,但它们在面对新任务或问题时,甚至在面对未经专门训练的语言细微差别或文化参考时,可能会举步维艰。

五、NLP 已经过时了吗?

        LLM 擅长利用其广阔的世界“知识”和创造力来生成新颖的长篇内容,其中可能存在多个正确的解决方案。但许多数据用例寻求的恰恰相反。它们需要从非结构化数据中提取特定的、具体的信息,而且通常只有一个正确答案。

        除了世界上顶尖公司和较大型的研究机构正在使用 LLM 端到端解决 NLP 问题,许多公司还没有做到这一点,即使他们的场景可以从 LLM 中受益。其中一些公司正在弄清楚这项技术能做什么,其他人甚至正在构建他们的第一个由 LLM 驱动的解决方案,但许多人已经意识到将这样的产品投入生产的挑战。

        开发人员尚无最佳实践和既定的设计模式。许多旨在帮助构建 LLM 系统的新工具还不够强大,无法依赖。在进行多个 LLM 调用时的复杂性和延迟,以及将 LLM 连接到外部工具时的安全性等问题可能会大大减慢开发速度。最后,弄清楚如何评估 LLM 的输出的困难使得衡量解决方案的价值变得更加困难,因此,一些公司更难证明继续使用 LLM 解决特定问题的研发工作是合理的。

        有句俗话叫“没坏就不要修”,很多公司都有运行良好的 NLP 系统。这些公司没有动力重新开始使用 Gen AI,如果他们决定尝试 LLM,他们很可能会先解决全新的问题(也许是传统方法无法解决的问题)。因此,使用“传统”NLP 技术的现有解决方案完全过时还需要相当长的时间(如果真的发生的话)。与此同时,这些公司将需要在生产中维护现有的 NLP 系统。这意味着他们仍然需要知道如何调试文本预处理管道、评估 NLP 模型,甚至可能从文本数据中提取新特征的员工,以不断改进现有系统。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/43003.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

脚本实现保留文本中特定字符之后的字符串

#目的背景 原始txt文本如下图 目的是为了去除序号,每行只单独呈现域名 手工删除漫长又麻烦,使用脚本快捷些 代码实现逻辑: 1.使用open函数打开文本,之后用变量lines存储文本的所有行,使用for循环,让变量te…

暑假学习计划怎么做 用待办计划软件安排更科学

暑期来临,无论是学生还是老师,做好暑期计划都至关重要。记得去年暑假,我给自己定下了阅读十本书的目标,却因为缺乏明确的计划,最后只草草读完了两本。而今年,我决定尝试一种新的方式——使用待办计划软件来…

大学生数学竞赛教程(蒲和平)

大学生数学竞赛教程(蒲和平) https://pan.baidu.com/s/1ytcIbVcZpof9WM1xa2dDfA 提取码: kf2r 源文件来自于:大学生数学竞赛教程【蒲和平】

谷粒商城实战笔记-24-分布式组件-SpringCloud Alibaba-Nacos配置中心-命名空间与配置分组

文章目录 一,命名空间1,简介1.1,命名空间的主要功能和特点1.2,使用场景1.3,如何指定命名空间 2,命名空间实战2.1,环境隔离2.2,服务隔离 二,配置集三,配置集ID…

【数据基础】— 基于Go1.19的站点模板爬虫的实现

目录 1. 定义目标站点 2. 使用Go的库 3. 发送HTTP请求 4. 解析HTML并提取数据 5. 存储数据 6. 并发处理 示例代码 基于Go 1.19的站点模板爬虫实现通常涉及几个关键步骤:定义目标站点、解析HTML页面、提取所需数据、存储数据以及可能的并发处理。下面我将详细…

js原型和类---prototype,__proto__,new,class

原型和原型链 在js中,所有的变量都有原型,原型也可以有原型,原型最终都指向Object 什么是原型 在js中,一个变量被创建出来,它就会被绑定一个原型;比如说,任何一个变量都可以使用console.log打…

PostgreSQL 中如何实现数据的增量更新和全量更新的平衡?

文章目录 一、增量更新与全量更新的概念增量更新全量更新 二、考虑的因素1. 数据量2. 数据更改的频率和规模3. 数据一致性要求4. 系统性能和资源利用5. 业务逻辑和流程 三、解决方案(一)混合使用增量更新和全量更新(二)使用临时表…

暑期旅游季必备,用这款客服神器应对爆棚的客流咨询

解决暑期旅游客流高峰问题 暑期是旅游高峰季节,客流量剧增,客户咨询纷至沓来。在这个时候,如何高效处理客户的咨询成为每家旅游机构和景点不可忽视的挑战。 聊天宝快捷回复助手是一款强大的工具,可帮助企业在客流高峰期快速回复客…

QDataStream的尴尬

最近在编写一个网络功能,需要将一个文件内容传递到客户端并将改内容以文件形式保存下来。由于文件内容是个加密文件且采用了二进制形式于是客户端就采用了QDataStream这个对象来保存文件。粗略的测试下来没有什么问题,可是在获取写入的文件是否发现写入的…

MemFire Cloud: 一种全新定义后端即服务的解决方案

在这个快节奏的互联网时代,开发者们最希望的就是能够省时省力地完成项目,快速上线。然而,搭建服务、开发接口API、处理各种后端问题,往往让人头疼不已。别担心,现在有了MemFire Cloud,一款为懒人开发者量身…

计算机性能-系统架构师(二十七)

1、计算机评价主要性能指标有 时钟频率、()、运算精度和内存容量等。 A丢包率 B端口吞吐量 C可移植性 D数据处理速率 解析: 计算机评价主要指标:时钟频率,运算速率,运算精度,内存的存储容量…

制作电子名片的小程序系统源码 快速生成电子名片

在当今数字化时代,传统的纸质名片已逐渐被智能电子名片所取代。电子名片小程序作为一种基于微信生态的创新名片交换方式,凭借其便捷性、高效性和环保性,成为了众多商务人士的首选。小编分享一个制作电子名片的小程序系统源码,无忧…

malloc实现原理【Liunx】

malloc实现原理 malloc是什么?malloc,calloc, realloc的区别malloc的实现原理malloc的两种实现方式为什么使用brk?为什么使用mmap? malloc怎么定界的malloc分配的是虚拟内存上的空间吗? malloc是什么? 通过malloc&…

LinK3D: Linear Keypoints Representation for 3D LiDAR Point Cloud【翻译与解读】

LinK3D: Linear Keypoints Representation for 3D LiDAR Point Cloud 摘要 特征提取和匹配是许多机器人视觉任务的基本组成部分,如 2D 或 3D 目标检测、识别和配准。2D 特征提取和匹配已取得巨大成功。然而,在 3D 领域,当前方法由于描述性差…

MySQL零散拾遗

mysql中大小写敏感吗? MySQL数据库默认情况下是不区分大小写的,这意味着在查询时,字段名和值的大小写不会影响结果。然而,这种默认行为可能会根据操作系统和配置的不同而有所变化。 在某些操作系统上,比如Linux&…

在android13的系统中出现INSTALL_FAILED_BAD_PERMISSION_GROUP安装失败的问题解决

在android13的系统中,编译能过,但是在真机运行出现无法安装的问题的问题,AS中提示出现INSTALL_FAILED_BAD_PERMISSION_GROUP的问题,找了好多资料都没有找到具体的解决方案,记录一下 解决方法: 在manifest中…

初识神经网络之我的理解

初识神经网络之我的理解 个人理解分析一个神经网络相关python代码参考文档个人理解 个人认为神经网络是一个分类问题,即通过多维的参数通过合适的计算来得到一个确定的输出。 在数学层面看来是从高维度的参数降维为低维度的分类的过程。至于输出的结果如何达成我们想要的或者…

Linux操作系统安全分析与防护

Linux操作系统安全机制 Linux操作系统由于其开放源代码和广泛应用,在服务器和嵌入式系统中占有重要地位。为了确保Linux系统的安全,必须了解并实施一系列有效的安全机制。这些机制包括用户身份验证、访问控制、数据加密、日志和审计、安全更新等。 一、…

2024前端面试题之Vue3

2024前端面试题之Vue3 在面试具有五年经验的前端工程师时,对于 Vue 3 的掌握程度是一个重要的考核点。本文将提供一系列针对这一级别工程师的 Vue 3 面试题,并附上详细的解析,帮助面试官全面评估候选人的技术实力和项目经验。 一、Vue 3 基础…

vscode-server安装和部分配置

文章目录 前言code-server安装rpm包安装tar.gz安装 vscode部分配置vscode配置函数跳转安装插件 vscode的structurevscode的hierarchy更改颜色主题 前言 vscode确实彳亍,虽然我觉得Clion(c/c语言版的IDEA)更方便,但是毕竟我没钱买license 这里记录一下网…