R包: phyloseq扩增子统计分析利器

介绍

phyloseq包对多类型数据的综合软件,并其对这些数据提供统计分析和可视化方法。

  微生物数据分析的主要挑战之一是如何整合不同类型的数据,从而对其进行生态学、遗传学、系统发育学、多元统计、可视化和检验等分析。同时,由于同行之间需要分享彼此的分析结果,如何去重复各自的结果呢?这需要一款统一数据输入接口且包含多种分析方法的软件,而phyloseq就是为处理这样的问题诞生的R包。

phyloseq数据结构

phyloseq对象的输入数据:

  • **otu_table:**也即是物种丰度表,以matrix方式输入,行名是物种名字;
  • **sample_data:**表型数据,包含样本的分组信息和环境因素等,以data.frame方式输入,行名是样本名字;
  • tax_table:物种分类学水平的信息,以matrix方式输入,行名或者第一列是otu_table的行名;
  • **phy_tree:**OTU的进化树关系表,计算uniFrac距离;
  • refseq: DNA,RNA和AA氨基酸的序列信息。

使用

输入数据

  • 物种丰度表: otu_mat
  • 物种分类水平表:tax_mat
  • 样本表型:samples_df
library(dplyr)
library(ggplot2)
library(phyloseq)
library(readxl) 
library(tibble)otu_mat<- read_excel("../datset/CARBOM data.xlsx", sheet = "OTU matrix") %>% column_to_rownames("otu")
tax_mat<- read_excel("../datset/CARBOM data.xlsx", sheet = "Taxonomy table") %>% column_to_rownames("otu")
samples_df <- read_excel("../datset/CARBOM data.xlsx", sheet = "Samples") %>% column_to_rownames("sample")
OTU <- otu_table(otu_mat %>% as.matrix(), taxa_are_rows = TRUE)
TAX <- tax_table(tax_mat %>% as.matrix())
samples <- sample_data(samples_df)carbom <- phyloseq(OTU, TAX, samples)

对phylose对象的处理

# 数据名字
sample_names(carbom)
rank_names(carbom)
sample_variables(carbom)# 数据子集
subset_samples(carbom, Select_18S_nifH =="Yes")
subset_taxa(carbom, Division %in% c("Chlorophyta", "Dinophyta", "Cryptophyta", "Haptophyta", "Ochrophyta", "Cercozoa"))
subset_taxa(carbom, !(Class %in% c("Syndiniales", "Sarcomonadea")))# 中位数测序深度归一化reads数目
total <- median(sample_sums(carbom))
standf <- function(x, t=total){round(t * (x / sum(x)))}
carbom <- transform_sample_counts(carbom, standf)

alpha diversity

plot_richness(carbom, x="fraction", color = "fraction", measures=c("Observed", "Chao1", "ACE", "Shannon", "Simpson", "InvSimpson"))+stat_boxplot(geom='errorbar', linetype=1, width=0.3)+geom_boxplot(aes(color=fraction), alpha=0.1)+ggpubr::stat_compare_means(comparisons = list(c("Nano", "Pico")),method = "wilcox.test")+guides(color=F)+theme_bw()

barplot

plot_bar(carbom, fill = "Division")+theme_bw()+# 0->left; .5->center; 1->righttheme(axis.text.x = element_text(angle = 90, vjust = .5, hjust = 1))

tree

library(ape)
random_tree <- rtree(ntaxa(carbom), rooted=TRUE, tip.label=taxa_names(carbom))
carbom_tree <- phyloseq(OTU, TAX, samples, random_tree)#  at least 20% of reads in at least one sample
carbom_abund <- filter_taxa(carbom_tree, function(x) {sum(x > total*0.20) > 0}, TRUE)plot_tree(carbom_abund, color="fraction", shape="level", label.tips="Division", ladderize="left", plot.margin=0.3)+labs(x="",y="")+scale_color_manual(values = c("red", "blue"))+theme_bw()

heatmap

#  at least 20% of reads in at least one sample
carbom_abund <- filter_taxa(carbom_tree, function(x) {sum(x > total*0.20) > 0}, TRUE)
plot_heatmap(carbom_abund, method = "NMDS", distance = "bray")# 自己设定距离
# plot_heatmap(carbom_abund, method = "MDS", distance = "(A+B-2*J)/(A+B-J)", 
#                taxa.label = "Class", taxa.order = "Class", 
#                trans=NULL, low="beige", high="red", na.value="beige")

For vectors x and y the “quadratic” terms are J = sum(x*y), A = sum(x^2), B = sum(y^2) and “minimum” terms are J = sum(pmin(x,y)), A = sum(x) and B = sum(y), and “binary” terms are either of these after transforming data into binary form (shared number of species, and number of species for each row). Somes examples :

  • A+B-2*J “quadratic” squared Euclidean
  • A+B-2*J “minimum” Manhattan
  • (A+B-2*J)/(A+B) “minimum” Bray-Curtis
  • (A+B-2*J)/(A+B) “binary” Sørensen
  • (A+B-2*J)/(A+B-J) “binary” Jaccard

ordination

# method : c("DCA", "CCA", "RDA", "CAP", "DPCoA", "NMDS", "MDS", "PCoA")
# disrance: unlist(distanceMethodList)
carbom.ord <- ordinate(carbom, method = "PCoA", distance = "bray")# plot_ordination(carbom, carbom.ord, type="taxa", color="Class", shape= "Class", 
#                   title="OTUs")plot_ordination(carbom, carbom.ord, type="samples", color="fraction", shape="level")+geom_point(size=3)+theme_bw()

network analysis

# plot_net(carbom, distance = "(A+B-2*J)/(A+B)", type = "taxa", 
#           maxdist = 0.7, color="Class", point_label="Genus")# plot_net(carbom, distance = "(A+B-2*J)/(A+B)", type = "samples", 
#            maxdist = 0.7, color="fraction", point_label="fraction")plot_net(carbom_abund, distance = "(A+B-2*J)/(A+B)", type = "taxa", maxdist = 0.8, color="Class", point_label="Genus") 

Deseq2 with phyloseq

library(DESeq2)
library(ggplot2)diagdds <- phyloseq_to_deseq2(carbom_abund, ~ fraction)
diagdds <- DESeq(diagdds, test="Wald", fitType="parametric")res <- results(diagdds, cooksCutoff = FALSE)
sigtab <- res[which(res$padj < 0.01), ]
sigtab <- cbind(as(sigtab, "data.frame"), as(tax_table(carbom_abund)[rownames(sigtab), ], "matrix"))
head(sigtab)

rarefaction curves

rarecurve2 <- function (x, step = 1, sample, xlab = "Sample Size", ylab = "Species", label = TRUE, col = "black", ...)## See documentation for vegan rarecurve, col is now used to define## custom colors for lines and panels
{tot <- rowSums(x)S <- vegan::specnumber(x)nr <- nrow(x)out <- lapply(seq_len(nr), function(i) {n <- seq(1, tot[i], by = step)if (n[length(n)] != tot[i])n <- c(n, tot[i])drop(vegan::rarefy(x[i, ], n))})Nmax <- sapply(out, function(x) max(attr(x, "Subsample")))Smax <- sapply(out, max)plot(c(1, max(Nmax)), c(1, max(Smax)), xlab = xlab, ylab = ylab,type = "n", ...)if (!missing(sample)) {abline(v = sample)rare <- sapply(out, function(z) approx(x = attr(z, "Subsample"),y = z, xout = sample, rule = 1)$y)abline(h = rare, lwd = 0.5)}for (ln in seq_len(length(out))) {color <- col[((ln-1) %% length(col)) + 1]N <- attr(out[[ln]], "Subsample")lines(N, out[[ln]], col = color, ...)}if (label) {ordilabel(cbind(tot, S), labels = rownames(x), col = col, ...)}invisible(out)
}## Rarefaction curve, ggplot style
ggrare <- function(physeq, step = 10, label = NULL, color = NULL, plot = TRUE, parallel = FALSE, se = TRUE) {## Args:## - physeq: phyloseq class object, from which abundance data are extracted## - step: Step size for sample size in rarefaction curves## - label: Default `NULL`. Character string. The name of the variable##          to map to text labels on the plot. Similar to color option##          but for plotting text.## - color: (Optional). Default ‘NULL’. Character string. The name of the##          variable to map to colors in the plot. This can be a sample##          variable (among the set returned by##          ‘sample_variables(physeq)’ ) or taxonomic rank (among the set##          returned by ‘rank_names(physeq)’).####          Finally, The color scheme is chosen automatically by##          ‘link{ggplot}’, but it can be modified afterward with an##          additional layer using ‘scale_color_manual’.## - color: Default `NULL`. Character string. The name of the variable##          to map to text labels on the plot. Similar to color option##          but for plotting text.## - plot:  Logical, should the graphic be plotted.## - parallel: should rarefaction be parallelized (using parallel framework)## - se:    Default TRUE. Logical. Should standard errors be computed.## require veganx <- as(otu_table(physeq), "matrix")if (taxa_are_rows(physeq)) { x <- t(x) }## This script is adapted from vegan `rarecurve` functiontot <- rowSums(x)S <- rowSums(x > 0)nr <- nrow(x)rarefun <- function(i) {cat(paste("rarefying sample", rownames(x)[i]), sep = "\n")n <- seq(1, tot[i], by = step)if (n[length(n)] != tot[i]) {n <- c(n, tot[i])}y <- vegan::rarefy(x[i, ,drop = FALSE], n, se = se)if (nrow(y) != 1) {rownames(y) <- c(".S", ".se")return(data.frame(t(y), Size = n, Sample = rownames(x)[i]))} else {return(data.frame(.S = y[1, ], Size = n, Sample = rownames(x)[i]))}}if (parallel) {out <- mclapply(seq_len(nr), rarefun, mc.preschedule = FALSE)} else {out <- lapply(seq_len(nr), rarefun)}df <- do.call(rbind, out)## Get sample dataif (!is.null(sample_data(physeq, FALSE))) {sdf <- as(sample_data(physeq), "data.frame")sdf$Sample <- rownames(sdf)data <- merge(df, sdf, by = "Sample")labels <- data.frame(x = tot, y = S, Sample = rownames(x))labels <- merge(labels, sdf, by = "Sample")}## Add, any custom-supplied plot-mapped variablesif( length(color) > 1 ){data$color <- colornames(data)[names(data)=="color"] <- deparse(substitute(color))color <- deparse(substitute(color))}if( length(label) > 1 ){labels$label <- labelnames(labels)[names(labels)=="label"] <- deparse(substitute(label))label <- deparse(substitute(label))}p <- ggplot(data = data, aes_string(x = "Size", y = ".S", group = "Sample", color = color))p <- p + labs(x = "Sample Size", y = "Species Richness")if (!is.null(label)) {p <- p + geom_text(data = labels, aes_string(x = "x", y = "y", label = label, color = color),size = 4, hjust = 0)}p <- p + geom_line()if (se) { ## add standard error if availablep <- p + geom_ribbon(aes_string(ymin = ".S - .se", ymax = ".S + .se", color = NULL, fill = color), alpha = 0.2)}if (plot) {plot(p)}invisible(p)
}ggrare(carbom, step = 100, color = "fraction", label = "fraction", se = FALSE)

ternary

ternary_norm <- function(physeq, group, levelOrder = NULL, raw = FALSE, normalizeGroups = TRUE) {## Args:## - phyloseq class object, otus abundances are extracted from this object## - group: Either the a single character string matching a##          variable name in the corresponding sample_data of ‘physeq’, or a##          factor with the same length as the number of samples in ‘physeq’.## - raw: logical, should raw read counts be used to compute relative abudances of an##        OTU among different conditions (defaults to FALSE)## - levelOrder: Order along which to rearrange levels of `group`. Goes like (left, top, right) for##               ternary plots and (left, top, right, bottom) for diamond plots. ## - normalizeGroups: logical, only used if raw = FALSE, should all levels be given##                    equal weights (TRUE, default) or weights equal to their sizes (FALSE)## Get grouping factor if (!is.null(sam_data(physeq, FALSE))) {if (class(group) == "character" & length(group) == 1) {x1 <- data.frame(sam_data(physeq))if (!group %in% colnames(x1)) {stop("group not found among sample variable names.")}group <- x1[, group]}}if (class(group) != "factor") {group <- factor(group)}## Reorder levels of factorif (length(levels(group)) > 4) {warnings("There are 5 groups or more, the data frame will not be suitable for ternary plots.")}if (!is.null(levelOrder)) {if (any(! group %in% levelOrder)) {stop("Some levels of the factor are not included in `levelOrder`")} else {group <- factor(group, levels = levelOrder)}}## construct relative abundances matrixtdf <- as(otu_table(physeq), "matrix")if (!taxa_are_rows(physeq)) { tdf <- t(tdf) }## If raw, no normalisation should be doneif (raw) {tdf <- t(tdf)abundance <- rowSums(t(tdf))/sum(tdf)meandf <- t(rowsum(tdf, group, reorder = TRUE))/rowSums(t(tdf))} else {        ## Construct relative abundances by sampletdf <- apply(tdf, 2, function(x) x/sum(x))if (normalizeGroups) {meandf <- t(rowsum(t(tdf), group, reorder = TRUE)) / matrix(rep(table(group), each = nrow(tdf)),nrow = nrow(tdf))abundance <- rowSums(meandf)/sum(meandf)meandf <- meandf / rowSums(meandf)} else {abundance <- rowSums(tdf)/sum(tdf)meandf <- t(rowsum(t(tdf), group, reorder = TRUE))/rowSums(tdf)}}## Construct cartesian coordinates for de Finetti's diagram## (taken from wikipedia, http://en.wikipedia.org/wiki/Ternary_plot)if (ncol(meandf) == 3) {ternary.coord <- function(a,b,c) { # a = left, b = right, c = topreturn(data.frame(x = 1/2 * (2*b + c)/(a + b + c),y = sqrt(3) / 2 * c / (a + b + c)))}cat(paste("(a, b, c) or (left, right, top) are (",paste(colnames(meandf), collapse = ", "),")", sep = ""), sep = "\n")## Data pointsdf <- data.frame(x = 1/2 * (2*meandf[ , 2] + meandf[ , 3]),y = sqrt(3)/2 * meandf[ , 3],abundance = abundance, row.names = rownames(meandf))## Extreme pointsextreme <- data.frame(ternary.coord(a = c(1, 0, 0),b = c(0, 1, 0),c = c(0, 0, 1)),labels = colnames(meandf),row.names = c("left", "right", "top"))}if (ncol(meandf) == 4) {diamond.coord <- function(a, b, c, d) {return(data.frame(x = (a - c) / (a + b + c + d),y = (b - d) / (a + b + c + d)))}cat(paste("(a, b, c, d) or (right, top, left, bottom) are (",paste(colnames(meandf), collapse = ", "),")", sep = ""), sep = "\n")## data pointsdf <- data.frame(x = (meandf[ , 1] - meandf[ , 3]),y = (meandf[ , 2] - meandf[ , 4]),abundance = abundance, row.names = rownames(meandf))## extreme pointsextreme <- data.frame(diamond.coord(a = c(1, 0, 0, 0),b = c(0, 1, 0, 0),c = c(0, 0, 1, 0),d = c(0, 0, 0, 1)),labels = colnames(meandf),row.names = c("right", "top", "left", "bottom"))}## Merge coordinates with taxonomix informationdf$otu <- rownames(df)## Add taxonomic informationif (!is.null(tax_table(physeq, FALSE))) {tax <- data.frame(otu = rownames(tax_table(physeq)),tax_table(physeq))df <- merge(df, tax, by.x = "otu")}## Add attributesattr(df, "labels") <- colnames(meandf)attr(df, "extreme") <- extremeattr(df, "type") <- c("ternary", "diamond", "other")[cut(ncol(meandf), breaks = c(0, 3, 4, Inf))]return(df)
}ternary_plot <- function(physeq, group, grid = TRUE, size = "log2(abundance)",color = NULL, shape = NULL, label = NULL,levelOrder = NULL, plot = TRUE,raw = FALSE, normalizeGroups = TRUE) {## Args:## - phyloseq class object, otus abundances are extracted from this object## - group: Either the a single character string matching a##          variable name in the corresponding sample_data of ‘physeq’, or a##          factor with the same length as the number of samples in ‘physeq’.## - raw: logical, should raw read counts be used to compute relative abudances of an##        OTU among different conditions (defaults to FALSE)## - normalizeGroups: logical, only used if raw = FALSE, should all levels be given##                    equal weights (TRUE, default) or weights equal to their sizes (FALSE)## - levelOrder: Order along which to rearrange levels of `group`. Goes like (left, top, right) for##               ternary plots and (left, top, right, bottom) for diamond plots.## - plot: logical, should the figure be plotted## - grid: logical, should a grid be plotted.## - size: mapping for size aesthetics, defaults to `abundance`.## - shape: mapping for shape aesthetics.## - color: mapping for color aesthetics.## - label: Default `NULL`. Character string. The name of the variable##          to map to text labels on the plot. Similar to color option##          but for plotting text.data <- ternary_norm(physeq, group, levelOrder, raw, normalizeGroups)labels <- attr(data, "labels")extreme <- attr(data, "extreme")type <- attr(data, "type")if (type == "other") {stop("Ternary plots are only available for 3 or 4 levels")}## bordersborders <- data.frame(x = extreme$x,y = extreme$y,xend = extreme$x[c(2:nrow(extreme), 1)],yend = extreme$y[c(2:nrow(extreme), 1)])## gridternary.coord <- function(a,b,c) { # a = left, b = right, c = topreturn(data.frame(x = 1/2 * (2*b + c)/(a + b + c),y = sqrt(3) / 2 * c / (a + b + c)))}diamond.coord <- function(a, b, c, d) {return(data.frame(x = (a - c) / (a + b + c + d),y = (b - d) / (a + b + c + d)))}x <- seq(1, 9, 1) / 10    ## Create base plot with theme_bwp <- ggplot() + theme_bw()## Remove normal grid, axes titles and axes ticksp <- p + theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank(), panel.border = element_blank(),axis.ticks = element_blank(), axis.text.x = element_blank(),axis.text.y = element_blank(),axis.title.x = element_blank(),axis.title.y = element_blank())if (type == "ternary") {## prepare levels' labelsaxes <- extremeaxes$x <- axes$x + c(-1/2, 1/2, 0) * 0.1axes$y <- axes$y + c(-sqrt(3)/4, -sqrt(3)/4, sqrt(3)/4) * 0.1## prepare ternary gridbottom.ticks <- ternary.coord(a = x, b = 1-x, c = 0)left.ticks <- ternary.coord(a = x, b = 0, c = 1-x)right.ticks <- ternary.coord(a = 0, b = 1 - x, c = x)ticks <- data.frame(bottom.ticks, left.ticks, right.ticks)colnames(ticks) <- c("xb", "yb", "xl", "yl", "xr", "yr")## Add grid (optional)if (grid == TRUE) {p <- p + geom_segment(data = ticks, aes(x = xb, y = yb, xend = xl, yend = yl),size = 0.25, color = "grey40")p <- p + geom_segment(data = ticks, aes(x = xb, y = yb, xend = xr, yend = yr),size = 0.25, color = "grey40")p <- p + geom_segment(data = ticks, aes(x = rev(xl), y = rev(yl), xend = xr, yend = yr),size = 0.25, color = "grey40")}}if (type == "diamond") {## prepare levels' labelsaxes <- extremeaxes$x <- axes$x + c(1, 0, -1, 0) * 0.1axes$y <- axes$y + c(0, 1, 0, -1) * 0.1## prepare diamond grid nw.ticks <- diamond.coord(a = x, b = 1-x, c = 0, d = 0)ne.ticks <- diamond.coord(a = 0, b = x, c = 1-x, d = 0)sw.ticks <- diamond.coord(a = x, b = 0, c = 0, d = 1 - x)se.ticks <- diamond.coord(a = 0, b = 0, c = 1-x, d = x)ticks <- data.frame(nw.ticks, ne.ticks, se.ticks, sw.ticks)colnames(ticks) <- c("xnw", "ynw", "xne", "yne","xse", "yse", "xsw", "ysw")        ## Add grid (optional)if (grid == TRUE) {p <- p + geom_segment(data = ticks, aes(x = xnw, y = ynw, xend = xse, yend = yse),size = 0.25, color = "grey40")p <- p + geom_segment(data = ticks, aes(x = xne, y = yne, xend = xsw, yend = ysw),size = 0.25, color = "grey40")p <- p + geom_segment(aes(x = c(0, -1), y = c(-1, 0),xend = c(0, 1), yend = c(1, 0)),size = 0.25, color = "grey40")}}## Add bordersp <- p + geom_segment(data = borders, aes(x = x, y = y, xend = xend, yend = yend))## Add levels' labelsp <- p + geom_text(data = axes, aes(x = x, y = y, label = labels))## Add, any custom-supplied plot-mapped variablesif( length(color) > 1 ){data$color <- colornames(data)[names(data)=="color"] <- deparse(substitute(color))color <- deparse(substitute(color))}if( length(shape) > 1 ){data$shape <- shapenames(data)[names(data)=="shape"] <- deparse(substitute(shape))shape <- deparse(substitute(shape))}	if( length(label) > 1 ){data$label <- labelnames(data)[names(data)=="label"] <- deparse(substitute(label))label <- deparse(substitute(label))}if( length(size) > 1 ){data$size <- sizenames(data)[names(data)=="size"] <- deparse(substitute(size))size <- deparse(substitute(size))}## Add data pointsternary_map <- aes_string(x = "x", y = "y", color = color,shape = shape, size = size, na.rm = TRUE)p <- p + geom_point(data = data, mapping = ternary_map)## Add the text labelsif( !is.null(label) ){label_map <- aes_string(x="x", y="y", label=label, na.rm=TRUE)p <- p + geom_text(data = data, mapping = label_map,size=3, vjust=1.5, na.rm=TRUE)}if (plot) {plot(p)}invisible(p)   
}samples_df$New_group <- paste0("group_", replicate(nrow(samples_df), sample(c("A", "B", "C"), 1, replace = FALSE)))samples <- sample_data(samples_df)carbom <- phyloseq(OTU, TAX, samples)
# color or shape are taxonomy
ternary_plot(carbom, "New_group", color = "Division")

参考

  1. phyloseq tutorial
  2. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data
  3. phyloseq extend
  4. phyloseq tutorial 2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/42868.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT学习日记一

创建QT文件步骤 这是创建之后widget.cpp和widget.h文件的具体代码解释&#xff0c;也是主要操作的文件&#xff0c;其中main.cpp不用操作&#xff0c;ui则是图形化操作界面&#xff0c;综合使用时&#xff0c;添加一个元件要注意重编名和编译一下&#xff0c;才能在widget这类…

生产者消费者模型和线程同步问题

文章目录 线程同步概念生产者消费者模型条件变量使用条件变量唤醒条件变量 阻塞队列 线程同步概念 互斥能保证安全,但是仅有安全不够,同步可以更高效的使用资源 生产者消费者模型 下面就基于生产者消费者来深入线程同步等概念: 如何理解生产消费者模型: 以函数调用为例: 两…

[高频 SQL 50 题(基础版)]第一千七百五十七题,可回收且低脂产品

题目&#xff1a; 表&#xff1a;Products ---------------------- | Column Name | Type | ---------------------- | product_id | int | | low_fats | enum | | recyclable | enum | ---------------------- product_id 是该表的主键&#xff08;具有唯…

SQLite 命令行客户端 + HTA 实现简易UI

SQLite 命令行客户端 HTA 实现简易UI SQLite 客户端.hta目录结构参考资料 仅用于探索可行性&#xff0c;就只实现了 SELECT。 SQLite 客户端.hta <!DOCTYPE html> <html> <head><meta http-equiv"Content-Type" content"text/html; cha…

C语言 | Leetcode C语言题解之第226题翻转二叉树

题目&#xff1a; 题解&#xff1a; struct TreeNode* invertTree(struct TreeNode* root) {if (root NULL) {return NULL;}struct TreeNode* left invertTree(root->left);struct TreeNode* right invertTree(root->right);root->left right;root->right le…

LeetCode加油站(贪心算法/暴力,分析其时间和空间复杂度)

题目描述 一.原本暴力算法 最初的想法是&#xff1a;先比较gas数组和cost数组的大小&#xff0c;找到可以作为起始点的站点(因为如果你起始点的油还不能到达下一个站点&#xff0c;就不能作为起始点)。当找到过后&#xff0c;再去依次顺序跑一圈&#xff0c;如果剩余的油为负数…

从数据仓库到数据湖(下):热门的数据湖开源框架

文章目录 一、前言二、Delta Lake三、Apache Hudi四、Apache Iceberg五、Apache Paimon六、对比七、笔者观点八、总结八、参考资料 一、前言 在上一篇从数据仓库到数据湖(上)&#xff1a;数据湖导论文章中&#xff0c;我们简单讲述了数据湖的起源、使用原因及其本质。本篇文章…

AI论文作图——如何表示模型参数冻结状态

一、LOGO &#x1f525; win10win11 ❄️ win10win11 二、注意事项&#xff1a; 根据电脑系统&#xff0c;选择对应的版本。 参考&#xff1a; 【AI论文作图】如何表示模型参数冻结状态&#xff1f;

神经网络中的激活函数

目录 一、什么是激活函数&#xff1a;二、如何选择激活函数&#xff1a;1.Sigmoid激活函数&#xff1a;2.线性激活函数&#xff1a;3.ReLU激活函数&#xff1a; 一、什么是激活函数&#xff1a; 激活函数是神经网络中的一种函数&#xff0c;它在神经元中起到了非线性映射的作用…

最新 Kubernetes 集群部署 + flannel 网络插件(保姆级教程,最新 K8S 版本)

资源列表 操作系统配置主机名IP所需插件CentOS 7.92C4Gk8s-master192.168.60.143flannel-cni-plugin、flannel、coredns、etcd、kube-apiserver、kube-controller-manager、kube-proxy、 kube-scheduler 、containerd、pause 、crictlCentOS 7.92C4Gk8s-node01192.168.60.144f…

gitee上传和下载idea项目的流程

环境&#xff1a;idea2022 一、上传项目 1、在gitee中新建一个仓库。 2、打开所要上传的项目的文件夹&#xff0c;点击Git Bash&#xff0c;生成.git文件夹。 3、在idea中打开所要上传的项目&#xff0c;在控制台的Terminal菜单中&#xff0c;输入git add . (注意&#xf…

安防综合管理/视频汇聚平台EasyCVR视频监控存储技术:高效稳定的视频数据保障方案

随着科技的飞速发展&#xff0c;视频监控已成为现代社会不可或缺的一部分。无论是城市治安、交通管理&#xff0c;还是商业安保、家庭监控&#xff0c;视频监控都发挥着至关重要的作用。而在这背后&#xff0c;视频监控存储技术则是确保监控数据得以长期保存、高效检索和可靠利…

「C++系列」C++ 修饰符类型

文章目录 一、C 修饰符类型1. 访问修饰符&#xff08;Access Modifiers&#xff09;2. 存储类修饰符&#xff08;Storage Class Specifiers&#xff09;3. 类型修饰符&#xff08;Type Modifiers&#xff09;4. 函数修饰符 二、C 修饰符类型-案例1. 访问修饰符案例2. 存储类修饰…

精讲:java之多维数组的使用

一、多维数组简介 1.为什么需要二维数组 我们看下面这个例子&#xff1f;“ 某公司2022年全年各个月份的销售额进行登记。按月份存储&#xff0c;可以使用一维数组。如果改写为按季度为单位存储怎么办呢&#xff1f; 或许现在学习了一维数组的你只能申请四个一维数组去存储每…

【福利】代码公开!咸鱼之王自动答题脚本

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你&#xff0c;欢迎[点赞、收藏、关注]哦~ 微信或QQ打开咸鱼之王小程序&#xff0c;进入答题界面&#xff0c;运行main.py。期间不要动鼠标。 可自行更改代码来适配自己的需求~ 可以按照示例图片…

深入了解线程锁的使用及锁的本质

文章目录 线程锁的本质局部锁的使用 锁的封装及演示线程饥饿问题 线程加锁本质可重入和线程安全死锁问题 根据前面内容的概述, 上述我们已经知道了在linux下关于线程封装和线程互斥,锁的相关的概念, 下面就来介绍一下关于线程锁的一些其他概念. 线程锁的本质 当这个锁是全局的…

Codeforces Round #956 (Div. 2) and ByteRace 2024

A. Array Divisibility 思路: 找出特例,发现输出 1∼&#x1d45b; 符合题意。直接输出1~n即可. 代码: #include<bits/stdc.h> using namespace std; typedef long long ll; #define N 1000005 ll dp[N], w[N], v[N], h[N]; ll dis[1005][1005]; ll a, b, c, n, m, t;…

iOS 开发技巧 - 使用本地 json 文件

前言 使用本地 json 文件的场景&#xff0c;在我们开发功能的阶段&#xff0c;服务端接口字段定义好了后&#xff0c;有些接口响应很慢&#xff0c;请求到响应可能要 几十秒甚至一分钟&#xff0c;我们需要频繁调用接口来调试功能&#xff1b;还有就是调用一些我们需要付费的三…

Ubuntu20.04下修改samba用户密码

Ubuntu20.04下修改samba用户密码 在Ubuntu系统中&#xff0c;修改samba密码通常涉及到两个方面&#xff1a;更改samba用户的密码和重置samba服务的密码数据库。以下是如何进行操作的步骤&#xff1a; 1、更改samba用户密码&#xff1a; 打开终端&#xff0c;使用以下命令更改…

vue打包terser压缩去除控制台打印和断点

情况一&#xff1a; 1、vue-cli搭建 代码压缩工具terser在vue-cli里面是自动支持的&#xff0c;所以直接在vue.config.js里面加入下面配置&#xff1a; const {defineConfig} require(vue/cli-service) module.exportsdefineConfig({transpileDependencies:true,terser:{te…