吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.1-1.3

目录

  • 第一门课:第二门课 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)
    • 第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)
      • 1.1 训练,验证,测试集(Train / Dev / Test sets)
      • 1.2 偏差,方差(Bias /Variance)
      • 1.3 机器学习基础(Basic Recipe for Machine Learning)

第一门课:第二门课 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)

第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)

1.1 训练,验证,测试集(Train / Dev / Test sets)

本月,我们将继续学习如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行,从而使学习算法在合理时间内完成自我学习。
第一周,我们首先说说神经网络机器学习中的问题,然后是随机神经网络,还会学习一些确保神经网络正确运行的技巧,带着这些问题,我们开始今天的课程。

在配置训练、验证和测试数据集的过程中做出正确决策会在很大程度上帮助大家创建高效的神经网络。训练神经网络时,我们需要做出很多决策,例如:神经网络分多少层;每层含有多少个隐藏单元;学习速率是多少;各层采用哪些激活函数。

在这里插入图片描述

创建新应用的过程中,我们不可能从一开始就准确预测出这些信息和其他超级参数。实际上,应用型机器学习是一个高度迭代的过程,通常在项目启动时,我们会先有一个初步想法,比如构建一个含有特定层数,隐藏单元数量或数据集个数等等的神经网络,然后编码,并尝试运行这些代码,通过运行和测试得到该神经网络或这些配置信息的运行结果,你可能会根据输出结果重新完善自己的想法,改变策略,或者为了找到更好的神经网络不断迭代更新自己的方案。

目前为止,我觉得,对于很多应用系统,即使是经验丰富的深度学习行家也不太可能一开始就预设出最匹配的超级参数,所以说,应用深度学习是一个典型的迭代过程,需要多次循环往复,才能为应用程序找到一个称心的神经网络,因此循环该过程的效率是决定项目进展速度的一个关键因素,而创建高质量的训练数据集,验证集和测试集也有助于提高循环效率。

在这里插入图片描述
假设这是训练数据,我用一个长方形表示,我们通常会将这些数据划分成几部分,一部分作为训练集,一部分作为简单交叉验证集,有时也称之为验证集,方便起见,我就叫它验证集(dev set),其实都是同一个概念,最后一部分则作为测试集。

接下来,我们开始对训练执行算法,通过验证集或简单交叉验证集选择最好的模型,经过充分验证,我们选定了最终模型,然后就可以在测试集上进行评估了,为了无偏评估算法的运行状况。

在机器学习发展的小数据量时代,常见做法是将所有数据三七分,就是人们常说的 70%验证集,30%测试集,如果没有明确设置验证集,也可以按照 60%训练,20%验证和 20%测试集来划分。这是前几年机器学习领域普遍认可的最好的实践方法。如果只有 100 条,1000 条或者 1 万条数据,那么上述比例划分是非常合理的。

但是在大数据时代,我们现在的数据量可能是百万级别,那么验证集和测试集占数据总量的比例会趋向于变得更小。因为验证集的目的就是验证不同的算法,检验哪种算法更有效,因此,验证集要足够大才能评估,比如 2 个甚至 10 个不同算法,并迅速判断出哪种算法更有效。我们可能不需要拿出 20%的数据作为验证集。

比如我们有 100 万条数据,那么取 1 万条数据便足以进行评估,找出其中表现最好的 1-2 种算法。同样地,根据最终选择的分类器,测试集的主要目的是正确评估分类器的性能,所以,如果拥有百万数据,我们只需要 1000 条数据,便足以评估单个分类器,并且准确评估该分类器的性能。假设我们有 100 万条数据,其中 1 万条作为验证集,1 万条作为测试集,100 万里取 1 万,比例是 1%,即:训练集占 98%,验证集和测试集各占 1%。对于数据量过百万的应用,训练集可以占到 99.5%,验证和测试集各占 0.25%,或者验证集占 0.4%,测试集占 0.1%。

总结一下,在机器学习中,我们通常将样本分成训练集,验证集和测试集三部分,数据集规模相对较小,适用传统的划分比例,数据集规模较大的,验证集和测试集要小于数据总量的 20%或 10%。后面我会给出如何划分验证集和测试集的具体指导。

现代深度学习的另一个趋势是越来越多的人在训练和测试集分布不匹配的情况下进行训练,假设你要构建一个用户可以上传大量图片的应用程序,目的是找出并呈现所有猫咪图片,可能你的用户都是爱猫人士,训练集可能是从网上下载的猫咪图片,而验证集和测试集是用户在这个应用上上传的猫的图片,就是说,训练集可能是从网络上抓下来的图片。而验证集和测试集是用户上传的图片。结果许多网页上的猫咪图片分辨率很高,很专业,后期制作精良,而用户上传的照片可能是用手机随意拍摄的,像素低,比较模糊,这两类数据有所不同,针对这种情况,根据经验,我建议大家要确保验证集和测试集的数据来自同一分布,关于这个问题我也会多讲一些。因为你们要用验证集来评估不同的模型,尽可能地优化性能。如果验证集和测试集来自同一个分布就会很好。

在这里插入图片描述
但由于深度学习算法需要大量的训练数据,为了获取更大规模的训练数据集,我们可以采用当前流行的各种创意策略,例如,网页抓取,代价就是训练集数据与验证集和测试集数据有可能不是来自同一分布。但只要遵循这个经验法则,你就会发现机器学习算法会变得更快。我会在后面的课程中更加详细地解释这条经验法则。

最后一点,就算没有测试集也不要紧,测试集的目的是对最终所选定的神经网络系统做出无偏估计,如果不需要无偏估计,也可以不设置测试集。所以如果只有验证集,没有测试集,我们要做的就是,在训练集上训练,尝试不同的模型框架,在验证集上评估这些模型,然后迭代并选出适用的模型。因为验证集中已经涵盖测试集数据,其不再提供无偏性能评估。当然,如果你不需要无偏估计,那就再好不过了。

在机器学习中,如果只有一个训练集和一个验证集,而没有独立的测试集,遇到这种情况,训练集还被人们称为训练集,而验证集则被称为测试集,不过在实际应用中,人们只是把测试集当成简单交叉验证集使用,并没有完全实现该术语的功能,因为他们把验证集数据过度拟合到了测试集中。如果某团队跟你说他们只设置了一个训练集和一个测试集,我会很谨慎,心想他们是不是真的有训练验证集,因为他们把验证集数据过度拟合到了测试集中,让这些团队改变叫法,改称其为“训练验证集”,而不是“训练测试集”,可能不太容易。即便我认为“训练验证集“在专业用词上更准确。实际上,如果你不需要无偏评估算法性能,那么这样是可以的。

所以说,搭建训练验证集和测试集能够加速神经网络的集成,也可以更有效地衡量算法地偏差和方差,从而帮助我们更高效地选择合适方法来优化算法。

1.2 偏差,方差(Bias /Variance)

关于深度学习的误差问题,一个趋势是对偏差和方差的权衡研究甚浅,你可能听说过这两个概念,但深度学习的误差很少权衡二者,我们总是分别考虑偏差和方差,却很少谈及偏差和方差的权衡问题,下面我们来一探究竟。
在这里插入图片描述
假设这就是数据集,如果给这个数据集拟合一条直线,可能得到一个逻辑回归拟合,但它并不能很好地拟合该数据,这是高偏差(high bias)的情况,我们称为“欠拟合(” underfitting)。

相反的如果我们拟合一个非常复杂的分类器,比如深度神经网络或含有隐藏单元的神经网络,可能就非常适用于这个数据集,但是这看起来也不是一种很好的拟合方式分类器方差较高(high variance),数据过度拟合(overfitting)。

在两者之间,可能还有一些像图中这样的,复杂程度适中,数据拟合适度的分类器,这个数据拟合看起来更加合理,我们称之为“适度拟合”(just right)是介于过度拟合和欠拟合中间的一类。

在这里插入图片描述
在这样一个只有𝑥1和𝑥2两个特征的二维数据集中,我们可以绘制数据,将偏差和方差可视化。在多维空间数据中,绘制数据和可视化分割边界无法实现,但我们可以通过几个指标,来研究偏差和方差。

在这里插入图片描述
我们沿用猫咪图片分类这个例子,左边一张是猫咪图片,右边一张不是。理解偏差和方差的两个关键数据是训练集误差(Train set error)和验证集误差(Dev set error)。

假定训练集误差是 1%,为了方便论证,假定验证集误差是 11%,可以看出训练集设置得非常好,而验证集设置相对较差,我们可能过度拟合了训练集,在某种程度上,验证集并没有充分利用交叉验证集的作用,像这种情况,我们称之为“高方差”。

通过查看训练集误差和验证集误差,我们便可以诊断算法是否具有高方差。也就是说衡量训练集和验证集误差就可以得出不同结论。

假设训练集误差是 15%,我们把训练集误差写在首行,验证集误差是 16%,假设该案例中人的错误率几乎为 0%,人们浏览这些图片,分辨出是不是猫。算法并没有在训练集中得到很好训练,如果训练数据的拟合度不高,就是数据欠拟合,就可以说这种算法偏差比较高。

再举一个例子,训练集误差是 15%,偏差相当高,但是,验证集的评估结果更糟糕,错误率达到 30%,在这种情况下,我会认为这种算法偏差高,因为它在训练集上结果不理想,而且方差也很高,这是方差偏差都很糟糕的情况。

有一点我先在这个简单提一下,具体的留在后面课程里讲,这些分析都是基于假设预测的,假设人眼辨别的错误率接近 0%,一般来说,最优误差也被称为贝叶斯误差,所以,最优误差接近 0%,我就不在这里细讲了,如果最优误差或贝叶斯误差非常高,比如 15%。我们再看看这个分类器(训练误差 15%,验证误差 16%),15%的错误率对训练集来说也是非常合理的,偏差不高,方差也非常低。

在这里插入图片描述
当所有分类器都不适用时,如何分析偏差和方差呢?比如,图片很模糊,即使是人眼,或者没有系统可以准确无误地识别图片,在这种情况下,最优误差会更高,那么分析过程就要做些改变了,我们暂时先不讨论这些细微差别,重点是通过查看训练集误差,我们可以判断数据拟合情况,至少对于训练数据是这样,可以判断是否有偏差问题,然后查看错误率有多高。当完成训练集训练,开始使用验证集验证时,我们可以判断方差是否过高,从训练集到验证集的这个过程中,我们可以判断方差是否过高。

以上分析的前提都是假设基本误差很小,训练集和验证集数据来自相同分布,如果没有这些假设作为前提,分析过程更加复杂,我们将会在稍后课程里讨论。

总结一下,我们讲了如何通过分析在训练集上训练算法产生的误差和验证集上验证算法产生的误差来诊断算法是否存在高偏差和高方差,是否两个值都高,或者两个值都不高,根据算法偏差和方差的具体情况决定接下来你要做的工作,下节课,我会根据算法偏差和方差的高低情况讲解一些机器学习的基本方法,帮助大家更系统地优化算法,我们下节课见。

1.3 机器学习基础(Basic Recipe for Machine Learning)

上节课我们讲的是如何通过训练误差和验证集误差判断算法偏差或方差是否偏高,帮助我们更加系统地在机器学习中运用这些方法来优化算法性能。

我在训练神经网络时用到地基本方法,初始模型训练完成后,我首先要知道算法的偏差高不高,如果偏差较高,试着评估训练集或训练数据的性能。如果偏差的确很高,甚至无法拟合训练集,那么你要做的就是选择一个新的网络,比如含有更多隐藏层或者隐藏单元的网络,或者花费更多时间来训练网络,或者尝试更先进的优化算法,我会不断尝试这些方法,直到解决掉偏差问题,这是最低标准,反复尝试,直到
可以拟合数据为止,至少能够拟合训练集。

如果网络足够大,通常可以很好的拟合训练集,只要你能扩大网络规模,那么训练一个更大的网络,你就应该可以至少可以很好地拟合训练集,至少可以拟合或者过拟合训练集。一旦偏差降低到可以接受的数值,检查一下方差有没有问题,为了评估方差,我们要查看验证集性能,我们能从一个性能理想的训练集推断出验证集的性能是否也理想,如果方差高,最好的解决办法就是采用更多数据,如果你能做到,会有一定的帮助,但有时候,我们无法获得更多数据,我们也可以尝试通过正则化来减少过拟合,这个我们下节课会讲。有时候我们不得不反复尝试,但是,如果能找到更合适的神经网络框架,有时它可能会一箭双雕,同时减少方差和偏差。如何实现呢?想系统地说出做法很难,总之就是不断重复尝试,直到找到一个低偏差,低方差的框架,这时你就成功了。

有两点需要大家注意:
第一点,高偏差和高方差是两种不同的情况,我们后续要尝试的方法也可能完全不同,我通常会用训练验证集来诊断算法是否存在偏差或方差问题,然后根据结果选择尝试部分方法。举个例子,如果算法存在高偏差问题,准备更多训练数据其实也没什么用处,至少这不是更有效的方法,所以大家要清楚存在的问题是偏差还是方差,还是两者都有问题,明确这一点有助于我们选择出最有效的方法。

第二点,在机器学习的初期阶段,关于所谓的偏差方差权衡的讨论屡见不鲜,原因是我们能尝试的方法有很多。可以增加偏差,减少方差,也可以减少偏差,增加方差,但是在深度学习的早期阶段,我们没有太多工具可以做到只减少偏差或方差却不影响到另一方。但在当前的深度学习和大数据时代,只要持续训练一个更大的网络,只要准备了更多数据,那么也并非只有这两种情况,我们假定是这样,那么,只要正则适度,通常构建一个更大的网络便可以,在不影响方差的同时减少偏差,而采用更多数据通常可以在不过多影响偏差的同时减少方差。这两步实际要做的工作是:训练网络,选择网络或者准备更多数据,现在我们有工具可以做到在减少偏差或方差的同时,不对另一方产生过多不良影响。我觉得这就是深度学习对监督式学习大有裨益的一个重要原因,也是我们不用太过关注如何平衡偏差和方差的一个重要原因,但有时我们有很多选择,减少偏差或方差而不增加另一方。最终,我们会得到一个非常规范化的网络。从下节课开始,我们将讲解正则化,训练一个更大的网络几乎没有任何负面影响,而训练一个大型神经网络的主要代价也只是计算时间,前提是网络是比较规范化的。

今天我们讲了如何通过组织机器学习来诊断偏差和方差的基本方法,然后选择解决问题的正确操作,希望大家有所了解和认识。我在课上不止一次提到了正则化,它是一种非常实用的减少方差的方法,正则化时会出现偏差方差权衡问题,偏差可能略有增加,如果网络足够大,增幅通常不会太高,我们下节课让大家更好理解如何实现神经网络的正则化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/426.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阶段性学习汇报 4月19日

一、毕业设计和毕业论文 毕业设计后端功能基本实现,但是还有些具体的细节需要优化,例如这些图片的显示问题,前端只有个前端页面以及部分交互逻辑,还需进一步完善。我想在疾病预测这里加一个创新点,基于推荐算法。小程序…

测绘管理与法律法规 | 中华人民共和国测绘法 | 学习笔记

《中华人民共和国测绘法》笔记: 第一章 总则 第一条:立法目的,即加强测绘管理,促进测绘事业发展,保障测绘事业为经济建设、国防建设、社会发展和生态保护服务,维护国家地理信息安全。 第二条:…

网络爬虫软件学习

1 什么是爬虫软件 爬虫软件,也称为网络爬虫或网络蜘蛛,是一种自动抓取万维网信息的程序或脚本。它基于一定的规则,自动地访问网页并抓取需要的信息。爬虫软件可以应用于大规模数据采集和分析,广泛应用于舆情监测、品牌竞争分析、…

ollama大语言模型

查看已经安装的大语言模型 ollama list运行大语言模型 ollama run llama2:latest

Qt实现Mysql数据库的连接,查询,修改,删除,增加功能

Qt实现Mysql数据库的连接,查询,修改,删除,增加功能 安装Mysql数据库,QtCreator Mysql选择Mysql Server 8.1版本安装。 Mysql Server 8.1安装过程 1.首先添加网络服务权限: WinR键输入compmgmt.msc进入…

Linux【实战】—— LAMP环境搭建 部署网站

目录 一、介绍 1.1什么是LAMP? 1.2LAMP的作用 二、部署静态网站 2.1 虚拟主机:一台服务器上部署多个网站 2.1.1 安装Apache服务 2.1.2 防火墙配置 2.1.3 准备网站目录 2.1.4 创建网站的配置文件 2.1.5 检查配置文件是否正确 2.1.6 Linux客户端…

web自动化系列-selenium的3种等待方式(十一)

在ui自动化测试中,几乎出现问题最多的情况就是定位不到元素 ,当你的自动化在运行过程中 ,突然发现报错走不下去了 。很大概率就是因为找不到元素 ,而找不到元素的一个主要原因就是页面加载慢 ,代码运行速度快导致 。 …

深入理解MySQL中的UPDATE JOIN语句

在MySQL数据库中,UPDATE语句用于修改表中现有的记录。有时,我们需要根据另一个相关联表中的条件来更新表中的数据。这时就需要使用UPDATE JOIN语句。最近我们遇到了这样的需求:我们有一张历史记录表,其中一个字段记录了用,连接的多…

【转】关于vsCode创建后,不显示NPM脚本解决

刚刚使用vue ui新建了个vue项目,打开vs-code发现,无论怎么设置都找不到NPM脚本显示,苦恼了很久,突然发现!打开了package-lock.json,然后立马把vs-code关闭,重新打开,就显示了npm脚本…

DePT: Decoupled Prompt Tuning 论文阅读

DePT: Decoupled Prompt Tuning 了论文阅读 Abstract1. Introduction2. Methodology2.1. Preliminaries2.2. A Closer Look at the BNT Problem2.3. Decoupled Prompt Tuning 3. Experiments5. Conclusions 文章信息: 原文链接:https://arxiv.org/abs/…

【行为型模式】模板方法模式

一、模板方法模式概述 模板方法模式定义:在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中。模板方法使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。(类对象型模式) 模板方法中的基本方法是实现算法的各个步骤,是模板方法的…

rocketmq-dashboard打包测试报错

rocketmq-dashboard运行的时候没问题,但是打包执行测试的时候就是报错 这时候跳过测试就可以成功 报错为 There are test failures. Please refer to D:\CodeEn\rocketmq-dashboard\target\surefire-reports for the individual test results. 你只需要跳过测试就…

vue框架中的路由

vue框架中的路由 一.VueRouter的使用(52)二.路由模块封装三.声明式导航 - 导航链接1.router-link-active类名2.router-link-exact-active类名3.声明式导航-自定义类名 四.查询参数传参五.动态路由传参方式查询参数传参 VS 动态路由传参 六.动态路由参数的…

javaWeb项目-毕业生就业信息管理系统功能介绍

项目关键技术 开发工具:IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7 框架:ssm、Springboot 前端:Vue、ElementUI 关键技术:springboot、SSM、vue、MYSQL、MAVEN 数据库工具:Navicat、SQLyog 1、JSP技术 JSP(Jav…

【Canvas技法】四条C形色带填满一个圆/环形

【关键点】 通过三角函数计算控制点的位置。 【成果图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>四条C形色带填满一个…

渐进式交付实践:通过 Argo Rollouts 和 FSM Gateway 实现金丝雀发布

渐进式交付&#xff08;Progressive delivery&#xff09;是一种软件发布策略&#xff0c;旨在更安全、更可控地将新版本软件逐步推出给用户。它是持续交付的进一步提升&#xff0c;允许开发团队在发布新版本时拥有更细粒度的控制&#xff0c;例如可以根据用户反馈、性能指标和…

【论文阅读】YOLO-World | 开集目标检测

Date&#xff1a;2024.02.22&#xff0c;Tencent AI Lab&#xff0c;华中科技大学Paper&#xff1a;https://arxiv.org/pdf/2401.17270.pdfGithub&#xff1a;https://github.com/AILab-CVC/YOLO-World 论文解决的问题&#xff1a; 通过视觉语言建模和大规模数据集上的预训练来…

ruoyi-nbcio-plus基于vue3的flowable的消息中心我的消息的升级修改

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 http://122.227.135.243:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a…

Python数据可视化:散点图matplotlib.pyplot.scatter()

【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 Python数据可视化&#xff1a; 散点图 matplotlib.pyplot.scatter() 请问关于以下代码表述错误的选项是&#xff1f; import matplotlib.pyplot as plt x [1, 2, 3, 4, 5] y [2, 3, 5, 7,…

热塑性聚氨酯TPU的特性有哪些?UV胶水能够粘接热塑性聚氨酯TPU吗?又有哪些优势呢?

热塑性聚氨酯&#xff08;Thermoplastic Polyurethane&#xff0c;TPU&#xff09;是一种具有多种优异性能的弹性塑料&#xff0c;广泛用于各种应用领域。以下是TPU的一些主要特性&#xff1a; 弹性和柔软性&#xff1a; TPU具有良好的弹性和柔软性&#xff0c;能够在受力后迅速…