Zynq系列FPGA实现SDI视频编解码+UDP以太网传输,基于GTX高速接口,提供3套工程源码和技术支持

目录

  • 1、前言
    • 工程概述
    • 免责声明
  • 2、相关方案推荐
    • 本博已有的 SDI 编解码方案
    • 本博已有的以太网方案
    • 本博已有的FPGA图像缩放方案
    • 1G/2.5G Ethernet PCS/PMA or SGMII架构以太网通信方案
    • AXI 1G/2.5G Ethernet Subsystem架构以太网通信方案
    • 本方案的缩放应用
    • 本方案在Xilinx--Kintex系列FPGA上的应用
  • 3、详细设计方案
    • 设计原理框图
    • SDI 输入设备
    • Gv8601a 均衡器
    • GTX 解串与串化
    • SMPTE SD/HD/3G SDI IP核
    • BT1120转RGB
    • 纯Verilog图像缩放模块详解
    • 纯Verilog图像缩放模块使用
    • 图像缓存
    • UDP协议栈
    • UDP视频发送
    • UDP协议栈数据发送
    • MAC数据缓冲FIFO组
    • IP地址、端口号的修改
    • PHY芯片-->以太网网口输出方案
      • Tri Mode Ethernet MAC
    • 1G/2.5G Ethernet PCS/PMA or SGMII-->以太网光口输出方案
      • 1G/2.5G Ethernet PCS/PMA or SGMII 简介
      • 1G/2.5G Ethernet PCS/PMA or SGMII 配置
      • Tri Mode Ethernet MAC
    • AXI 1G/2.5G Ethernet Subsystem-->以太网光口输出方案
      • AXI 1G/2.5G Ethernet Subsystem 简介
      • AXI 1G/2.5G Ethernet Subsystem 配置
    • QT上位机和源码
    • 工程源码架构
  • 4、工程源码1详解-->PHY芯片以太网输出方案
  • 5、工程源码2详解-->1G/2.5G Ethernet PCS/PMA or SGMII以太网输出方案
  • 6、工程源码3详解-->AXI 1G/2.5G Ethernet Subsystem以太网输出方案
  • 7、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 8、上板调试验证
    • 准备工作
    • 输出视频演示
  • 9、福利:工程代码的获取

Zynq系列FPGA实现SDI视频编解码+UDP以太网传输,基于GTX高速接口,提供3套工程源码和技术支持

1、前言

目前FPGA实现SDI视频编解码有两种方案:一是使用专用编解码芯片,比如典型的接收器GS2971,发送器GS2972,优点是简单,比如GS2971接收器直接将SDI解码为并行的YCrCb422,GS2972发送器直接将并行的YCrCb422编码为SDI视频,缺点是成本较高,可以百度一下GS2971和GS2972的价格;另一种方案是使用FPGA逻辑资源部实现SDI编解码,利用Xilinx系列FPGA的GTP/GTX资源实现解串,利用Xilinx系列FPGA的SMPTE SDI资源实现SDI编解码,优点是合理利用了FPGA资源,GTP/GTX资源不用白不用,缺点是操作难度大一些,对FPGA开发者的技术水平要求较高。有意思的是,这两种方案在本博这里都有对应的解决方案,包括硬件的FPGA开发板、工程源码等等。

工程概述

本设计基于Zynq系列的Zynq7100 FPGA开发板实现SDI视频编解码+图像缩放+UDP以太网传输,输入源为一个3G-SDI相机或者HDMI转3G-SDI盒子,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;

本设计的目的是做图像缩放后再以UDP以太网输出解码的SDI视频,针对目前市面上的主流项目需求,本博设计了三种以太网输出方式,第一种是基于传统PHY芯片(RTL8211E)输出,第一种是基于Xilinx官方的1G/2.5G Ethernet PCS/PMA or SGMII+Tri Mode Ethernet MAC架构输出,第一种是基于Xilinx官方的AXI 1G/2.5G Ethernet Subsystem架构输出;首先对解码BT1120视频进行转RGB和图像缓存操作和图像缩放操作;图像缩放方案采用纯verilog方案将输入的1920x1080视频缩放为1280x720;再使用BT1120转RGB模块实现视频格式转换;再使用本博常用的FDMA图像缓存架构实现图像3帧缓存,缓存介质为板载的PS端DDR3;图像从DDR3读出后,进入UDP视频发送模块,对视频进行自定义协议编码;然后送入UDP协议栈进行UDP以太网帧格式编码;然后输出给MAC层,再输出给物理层,最后通过网线输出给PC上位机;PC端上位机(QT)接收网络视频并显示图像;本博客提供3套工程源码,具体如下:
在这里插入图片描述
现对上述3套工程源码做如下解释,方便读者理解:

工程源码1

开发板FPGA型号为Xilinx–>Xilinx-Zynq7100–xc7z100ffg900-2;输入视频为3G-SDI相机或者HDMI转3G-SDI盒子,输入分辨率为1920x1080@60Hz,输入视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过GTX将SDI视频解串为并行数据;再经过SMPTE SDI IP核将SDI解码BT1120数据;再经过BT1120转RGB模块将BT1120转换为RGB888视频;再经过自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为1280x720;再经过自研的FDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;再经过UDP视频发送模块,对视频进行自定义协议编码;再经过UDP协议栈进行UDP以太网帧格式编码;再经过Xilinx官方的Tri Mode Ethernet MAC实现MAC数据发送,输出RGMII接口数据;再经过板载的RTL8211E芯片后以RJ45网口输出;PC端运行QT上位机实时接收视频数据并显示出来;该工程运行Zynq软核;适用于SDI转网络(PHY芯片方案)输出场景;

工程源码2

开发板FPGA型号为Xilinx–>Xilinx-Zynq7100–xc7z100ffg900-2;输入视频为3G-SDI相机或者HDMI转3G-SDI盒子,输入分辨率为1920x1080@60Hz,输入视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;经过GTX将SDI视频解串为并行数据;再经过SMPTE SDI IP核将SDI解码BT1120数据;再经过BT1120转RGB模块将BT1120转换为RGB888视频;再经过自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为1280x720;再经过自研的FDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;再经过UDP视频发送模块,对视频进行自定义协议编码;再经过UDP协议栈进行UDP以太网帧格式编码;再经过Xilinx官方的1G/2.5G Ethernet PCS/PMA or SGMII+Tri Mode Ethernet MAC架构实现MAC数据发送,输出到板载的SFP光口;再经过SFP光口转网口(电口)后以网线输出;PC端运行QT上位机实时接收视频数据并显示出来;该工程运行Zynq软核;适用于SDI转网络(光口方案)输出场景;

工程源码3

开发板FPGA型号为Xilinx–>Xilinx-Zynq7100–xc7z100ffg900-2;输入视频为3G-SDI相机或者HDMI转3G-SDI盒子,输入分辨率为1920x1080@60Hz,输入视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;经过GTX将SDI视频解串为并行数据;再经过SMPTE SDI IP核将SDI解码BT1120数据;再经过BT1120转RGB模块将BT1120转换为RGB888视频;再经过自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为1280x720;再经过自研的FDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;再经过UDP视频发送模块,对视频进行自定义协议编码;再经过UDP协议栈进行UDP以太网帧格式编码;再经过Xilinx官方的AXI 1G/2.5G Ethernet Subsystem架构实现MAC数据发送,输出到板载的SFP光口;再经过SFP光口转网口(电口)后以网线输出;PC端运行QT上位机实时接收视频数据并显示出来;该工程运行Zynq软核;适用于SDI转网络(光口方案)输出场景;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

本博已有的 SDI 编解码方案

我的博客主页开设有SDI视频专栏,里面全是FPGA编解码SDI的工程源码及博客介绍;既有基于GS2971/GS2972的SDI编解码,也有基于GTP/GTX资源的SDI编解码;既有HD-SDI、3G-SDI,也有6G-SDI、12G-SDI等;专栏地址链接如下:
点击直接前往

本博已有的以太网方案

目前我这里有大量UDP协议的工程源码,包括UDP数据回环,视频传输,AD采集传输等,也有TCP协议的工程,对网络通信有需求的兄弟可以去看看,以下是专栏地址:
直接点击前往

本博已有的FPGA图像缩放方案

我的主页目前有FPGA图像缩放专栏,改专栏收录了我目前手里已有的FPGA图像缩放方案,从实现方式分类有基于HSL实现的图像缩放、基于纯verilog代码实现的图像缩放;从应用上分为单路视频图像缩放、多路视频图像缩放、多路视频图像缩放拼接;从输入视频分类可分为OV5640摄像头视频缩放、SDI视频缩放、MIPI视频缩放等等;以下是专栏地址:
点击直接前往

1G/2.5G Ethernet PCS/PMA or SGMII架构以太网通信方案

1G/2.5G Ethernet PCS/PMA or SGMII+Tri Mode Ethernet MAC架构以太网通信方案可实现无PHY芯片的以太网通信,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

AXI 1G/2.5G Ethernet Subsystem架构以太网通信方案

AXI 1G/2.5G Ethernet Subsystem架构以太网通信方案可实现无PHY芯片的以太网通信,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

本方案的缩放应用

本方案有缩放版本的应用,只做SDI视频编解码,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

本方案在Xilinx–Kintex系列FPGA上的应用

本方案在Xilinx–Kintex系列FPGA上的也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

3、详细设计方案

设计原理框图

设计原理框图如下:
在这里插入图片描述
注意!!!!
注意!!!!
紫色箭头:PHY芯片的网络输出方案,需要外接PHY芯片;
绿色箭头:1G/2.5G Ethernet PCS/PMA or SGMII+Tri Mode Ethernet MAC架构的网络输出方案,不需要外接PHY芯片,由SFP光口输出;
红色箭头:AXI 1G/2.5G Ethernet Subsystem架构的网络输出方案,不需要外接PHY芯片,由SFP光口输出;

SDI 输入设备

SDI 输入设备可以是SDI相机,代码兼容HD/SD/3G-SDI三种模式;SDI相机相对比较贵,预算有限的朋友可以考虑用HDMI转SDI盒子模拟SDI相机,这种盒子某宝一百块左右;当使用HDMI转SDI盒子时,输入源可以用笔记本电脑,即用笔记本电脑通过HDMI线连接到HDMI转SDI盒子的HDMI输入接口,再用SDI线连接HDMI转SDI盒子的SDI输出接口到FPGA开发板,如下:
在这里插入图片描述

Gv8601a 均衡器

Gv8601a芯片实现单端转差分和均衡EQ的功能,这里选用Gv8601a是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8601a均衡器原理图如下:
在这里插入图片描述

GTX 解串与串化

本设计使用Xilinx特有的GTX高速信号处理资源实现SDI差分视频信号的解串与串化,对于SDI视频接收而言,GTX起到解串的作用,即将输入的高速串行的差分信号解为并行的数字信号;对于SDI视频发送而言,GTX起到串化的作用,即将输入的并行的数字信号串化为高速串行的差分信号;GTX的使用一般需要例化GTX IP核,通过vivado的UI界面进行配置,但本设计需要对SD-SDI、HD-SDI、3G-SDI视频进行自动识别和自适应处理,所以需要使得GTX具有动态改变线速率的功能,该功能可通过DRP接口配置,也可通过GTX的rate接口配置,所以不能使用vivado的UI界面进行配置,而是直接例化GTX的GTXE2_CHANNEL和GTXE2_COMMON源语直接使用GTX资源;此外,为了动态配置GTX线速率,还需要GTX控制模块,该模块参考了Xilinx的官方设计方案,具有动态监测SDI模式,动态配置DRP等功能;该方案参考了Xilinx官方的设计;GTX 解串与串化模块代码架构如下:
在这里插入图片描述

SMPTE SD/HD/3G SDI IP核

SMPTE SD/HD/3G SDI IP核是Xilinx系列FPGA特有的用于SDI视频编解码的IP,该IP配置使用非常简单,vivado的UI界面如下:
在这里插入图片描述
SMPTE SD/HD/3G SDI IP核必须与GTX配合才能使用,对于SDI视频接收而言,该IP接收来自于GTX的数据,然后将SDI视频解码为BT1120视频输出,对于SDI视频发送而言,该IP接收来自于用户侧的的BT1120视频数据,然后将BT1120视频编码为SDI视频输出;该方案参考了Xilinx官方的设计;SMPTE SD/HD/3G SDI IP核代码架构如下:
在这里插入图片描述

BT1120转RGB

BT1120转RGB模块的作用是将SMPTE SD/HD/3G SDI IP核解码输出的BT1120视频转换为RGB888视频,它由BT1120转CEA861模块、YUV422转YUV444模块、YUV444转RGB888三个模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
在这里插入图片描述

纯Verilog图像缩放模块详解

工程源码1、2的图像缩放模块使用纯Verilog方案,功能框图如下,由跨时钟FIFO、插值+RAM阵列构成,跨时钟FIFO的目的是解决跨时钟域的问题,比如从低分辨率视频放大到高分辨率视频时,像素时钟必然需要变大,这是就需要异步FIFO了,插值算法和RAM阵列具体负责图像缩放算法层面的实现;
在这里插入图片描述
插值算法和RAM阵列以ram和fifo为核心进行数据缓存和插值实现,设计架构如下:
在这里插入图片描述
图像缩放模块代码架构如下:模块的例化请参考工程源码的顶层代码;
在这里插入图片描述
图像缩放模块FIFO的选择可以调用工程对应的vivado工具自带的FIFO IP核,也可以使用纯verilog实现的FIFO,可通过接口参数选择,图像缩放模块顶层接口如下:

module helai_video_scale #(//---------------------------Parameters----------------------------------------parameter FIFO_TYPE          =	"xilinx",		// "xilinx" for xilinx-fifo ; "verilog" for verilog-fifoparameter DATA_WIDTH         =	8       ,		//Width of input/output dataparameter CHANNELS           =	1       ,		//Number of channels of DATA_WIDTH, for color imagesparameter INPUT_X_RES_WIDTH  =	11      		//Widths of input/output resolution control signals	
)(input                            i_reset_n         ,    // 输入--低电平复位信号input  [INPUT_X_RES_WIDTH-1:0]   i_src_video_width ,	// 输入视频--即缩放前视频的宽度input  [INPUT_X_RES_WIDTH-1:0]   i_src_video_height,	// 输入视频--即缩放前视频的高度input  [INPUT_X_RES_WIDTH-1:0]   i_des_video_width ,	// 输出视频--即缩后前视频的宽度input  [INPUT_X_RES_WIDTH-1:0]   i_des_video_height,	// 输出视频--即缩后前视频的高度input                            i_src_video_pclk  ,	// 输入视频--即缩前视频的像素时钟input                            i_src_video_vs    ,	// 输入视频--即缩前视频的场同步信号,必须为高电平有效input                            i_src_video_de    ,	// 输入视频--即缩前视频的数据有效信号,必须为高电平有效input  [DATA_WIDTH*CHANNELS-1:0] i_src_video_pixel ,	// 输入视频--即缩前视频的像素数据input                            i_des_video_pclk  ,	// 输出视频--即缩后视频的像素时钟,一般为写入DDR缓存的时钟output                           o_des_video_vs    ,	// 输出视频--即缩后视频的场同步信号,高电平有效output                           o_des_video_de    ,	// 输出视频--即缩后视频的数据有效信号,高电平有效output [DATA_WIDTH*CHANNELS-1:0] o_des_video_pixel 		// 输出视频--即缩后视频的像素数据
);

FIFO_TYPE选择原则如下:
1:总体原则,选择"xilinx"好处大于选择"verilog";
2:当你的FPGA逻辑资源不足时,请选"xilinx";
3:当你图像缩放的视频分辨率较大时,请选"xilinx";
4:当你的FPGA没有FIFO IP或者FIFO IP快用完了,请选"verilog";
5:当你向自学一下异步FIFO时,,请选"verilog";
6:不同FPGA型号对应的工程FIFO_TYPE参数不一样,但选择原则一样,具体参考代码;

2种插值算法的整合与选择
本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;
具体选择参数如下:

input  wire i_scaler_type //0-->bilinear;1-->neighbor

通过输入i_scaler_type 的值即可选择;

输入0选择双线性插值算法;
输入1选择邻域插值算法;

代码里的配置如下:
在这里插入图片描述

纯Verilog图像缩放模块使用

图像缩放模块使用非常简单,顶层代码里设置了四个参数,举例如下:
在这里插入图片描述
上图视频通过图像缩放模块但不进行缩放操作,旨在掌握图像缩放模块的用法;如果需要将图像放大到1080P,则修改为如下:
在这里插入图片描述
当然,需要修改的不仅仅这一个地方,FDMA的配置也需要相应修改,详情请参考代码,但我想要证明的是,图像缩放模块使用非常简单,你都不需要知道它内部具体怎么实现的,上手就能用;

图像缓存

使用本博常用的的FDMA图像缓存架构;缓存介质为PS端DDR3;FDMA图像缓存架构由FDMA、FDMA控制器、缓存帧选择器构成;图像缓存使用Xilinx vivado的Block Design设计,如下图:
在这里插入图片描述
关于FDMA更详细的介绍,请参考我之前的博客,博文链接如下:
点击直接前往
需要注意的是,为了适应UDP视频传输,这里的FDMA已被我修改,和以往版本不同,具体参考代码;

UDP协议栈

本UDP协议栈使用UDP协议栈网表文件,该协议栈目前并不开源,只提供网表文件,虽看不见源码但可正常实现UDP通信,但不影响使用,该协议栈带有用户接口,使得用户无需关心复杂的UDP协议而只需关心简单的用户接口时序即可操作UDP收发,非常简单;协议栈架构如下:
在这里插入图片描述
协议栈性能表现如下:
1:支持 UDP 接收校验和检验功能,暂不支持 UDP 发送校验和生成;
2:支持 IP 首部校验和的生成和校验,同时支持 ICMP 协议中的 PING 功能,可接收并响应同一个子网内部设备的 PING 请求;
3:可自动发起或响应同一个子网内设备的 ARP 请求,ARP 收发完全自适应。ARP 表可保存同一个子网内部256 个 IP 和 MAC 地址对;
4:支持 ARP 超时机制,可检测所需发送数据包的目的 IP 地址是否可达;
5:协议栈发送带宽利用率可达 93%,高发送带宽下,内部仲裁机制保证 PING 和 ARP 功能不受任何影响;
6:发送过程不会造成丢包;
7:提供64bit位宽AXI4-Stream形式的MAC接口,可与Xilinx官方的千兆以太网IP核Tri Mode Ethernet MAC,以及万兆以太网 IP 核 10 Gigabit Ethernet Subsystem、10 Gigabit Ethernet MAC 配合使用;
有了此协议栈,我们无需关心复杂的UDP协议的实现了,直接调用接口即可使用。。。
本UDP协议栈用户接口发送时序如下:
在这里插入图片描述
本UDP协议栈用户接口接收时序如下:
在这里插入图片描述

UDP视频发送

UDP视频发送实现UDP视频数据的组包,UDP数据发送必须与QT上位机的接受程序一致,上位机定义的UDP帧格式包括帧头个UDP数据,帧头定义如下:
在这里插入图片描述
FPGA端的UDP数据组包代码必须与上图的数据帧格式对应,否则QT无法解析,代码中定义了数据组包状态机以及数据帧,如下:
在这里插入图片描述
另外,由于UDP发送是64位数据位宽,而图像像素数据是24bit位宽,所以必须将UDP数据重新组合,以保证像素数据的对齐,这部分是整个工程的难点,也是所有FPGA做UDP数据传输的难点;

UDP协议栈数据发送

UDP协议栈具有发送和接收功能,但这里仅用到了发送,此部分代码架构如下:
在这里插入图片描述
UDP协议栈代码组我已经做好,用户可直接拿去使用;

MAC数据缓冲FIFO组

这里对代码中用到的数据缓冲FIFO组做如下解释:
由于 UDP IP 协议栈的 AXI-Stream 数据接口位宽为 64bit,而 Tri Mode Ethernet MAC 的 AXI-Stream数据接口位宽为 8bit。因此,要将 UDP IP 协议栈与 Tri Mode Ethernet MAC 之间通过 AXI-Stream 接口互联,需要进行时钟域和数据位宽的转换。实现方案如下图所示:
在这里插入图片描述
收发路径(本设计只用到了发送)都使用了2个AXI-Stream DATA FIFO,通过其中1个FIFO实现异步时钟域的转换,1个FIFO实
现数据缓冲和同步Packet mode功能;由于千兆速率下Tri Mode Ethernet MAC的AXI-Stream数据接口同步时钟信号为125MHz,此时,UDP协议栈64bit的AXI-Stream数据接口同步时钟信号应该为125MHz/(64/8)=15.625MHz,因此,异步
AXI-Stream DATA FIFO两端的时钟分别为125MHz(8bit),15.625MHz(64bit);UDP IP协议栈的AXI-Stream接口经过FIFO时钟域转换后,还需要进行数据数据位宽转换,数据位宽的转换通过AXI4-Stream Data Width Converter完成,在接收路径中,进行 8bit 到 64bit 的转换;在发送路径中,进行 64bit 到 8bit 的转换;

IP地址、端口号的修改

UDP协议栈留出了IP地址、端口号的修改端口供用户自由修改,位置如下:
在这里插入图片描述

PHY芯片–>以太网网口输出方案

PHY芯片网络输出架构以Tri Mode Ethernet MAC为核心,以PHY芯片为载体,优点是FPGA逻辑设计较为简单,缺点是硬件设计较为复杂,硬件成本会相应提高;本设计采用RTL8211E芯片,工作于延时模式,RGMII接口;关于该方案的以太网输出详细设计文档,请参考我之前的博客,博客链接如下:
直接点击前往

Tri Mode Ethernet MAC

Tri Mode Ethernet MAC主要是为了适配PHY芯片,因为后者的输入接口是GMII,而Tri Mode Ethernet MAC的输入接口是AXIS,输出接口是GMII,Tri Mode Ethernet MAC配置如下:
在这里插入图片描述
在这里插入图片描述
提供Tri Mode Ethernet MAC使用教程和移植教程,如下:
在这里插入图片描述

1G/2.5G Ethernet PCS/PMA or SGMII–>以太网光口输出方案

1G/2.5G Ethernet PCS/PMA or SGMII+Tri Mode Ethernet MAC网络输出架构不需要外接PHY芯片,网络数据直接通过SFP光口输出,优点是硬件设计较为简单,硬件成本会相应较低,缺点是FPGA逻辑设计较为复杂;关于该方案的以太网输出详细设计文档,请参考我之前的博客,博客链接如下:
直接点击前往

该方案需要一个SFP转网口(电口)接网线输出到PC端,可以到某宝购买该类电口,30多块钱,如下:
在这里插入图片描述

1G/2.5G Ethernet PCS/PMA or SGMII 简介

1G/2.5G Ethernet PCS/PMA or SGMII实现了类似于网络PHY芯片的功能,其功能框图如下:
在这里插入图片描述
接收端:
数据首先经过GT资源解串,将串行数据解为并行数据;然后经过弹性Buffer做数据缓冲处理,主要是为了去频偏,使板与板之间的数据稳定,然后进行8b/10b解码,恢复正常数据;然后经过PCS接收同步器,对数据进行跨时钟处理,同步到GMII时序下;最后将数据放入GMII总线下输出;

发送端:
发送端则简单得多,输入时序为GMII;然后进入PCS发送引擎;然后对数据进行8b/10b编码;最后放入GT串化后输出;

1G/2.5G Ethernet PCS/PMA or SGMII 配置

1G/2.5G Ethernet PCS/PMA or SGMII配置为1G,其与MAC的接口为GMII,配置如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
1G/2.5G Ethernet PCS/PMA or SGMII可运行于1G和2.5G线速率,对GT时钟有严格研究,按照官方数据手册,运行1G线速率时,GT差分时钟必须为125M,运行2.5G线速率时,GT差分时钟必须为312.5M,如下:
在这里插入图片描述

Tri Mode Ethernet MAC

Tri Mode Ethernet MAC主要是为了适配1G/2.5G Ethernet PCS/PMA or SGMII,因为后者的输入接口是GMII,而Tri Mode Ethernet MAC的输入接口是AXIS,输出接口是GMII,Tri Mode Ethernet MAC配置如下:
在这里插入图片描述
在这里插入图片描述

AXI 1G/2.5G Ethernet Subsystem–>以太网光口输出方案

AXI 1G/2.5G Ethernet Subsystem网络输出架构不需要外接PHY芯片,网络数据直接通过SFP光口输出,优点是硬件设计较为简单,硬件成本会相应较低,缺点是FPGA逻辑设计较为复杂;关于该方案的以太网输出详细设计文档,请参考我之前的博客,博客链接如下:
直接点击前往

该方案需要一个SFP转网口(电口)接网线输出到PC端,可以到某宝购买该类电口,30多块钱,如下:
在这里插入图片描述

AXI 1G/2.5G Ethernet Subsystem 简介

AXI 1G/2.5G Ethernet Subsystem的权威官方手册为《pg138-axi-ethernet》,请自行下载阅读,该IP是Xilinx官方将1G/2.5G Ethernet PCS/PMA or SGMII和Tri Mode Ethernet MAC封装在一起组成的全新IP,目的是简化FPGA实现以太网物理层的设计难度,直接调用这一个IP即可使用,该IP展开后如下:
在这里插入图片描述
接收端:
数据首先经过1G/2.5G Ethernet PCS/PMA or SGMII解串,将串行数据解为并行数据;然后经过弹性Buffer做数据缓冲处理,主要是为了去频偏,使板与板之间的数据稳定,然后进行8b/10b解码,恢复正常数据;然后经过PCS接收同步器,对数据进行跨时钟处理,同步到GMII时序下然后输出给Tri Mode Ethernet MAC进行数据合适转换,最后以AXI4-Stream输出;

发送端:
发送端则简单得多,用户侧UDP MAC数据首先给到Tri Mode Ethernet MAC进行数据合适转换,以GMII数据输出给1G/2.5G Ethernet PCS/PMA or SGMII,后者进行以太网物理层处理,以差分信号输出;

AXI 1G/2.5G Ethernet Subsystem 配置

AXI 1G/2.5G Ethernet Subsystem配置为1G,如下:
在这里插入图片描述
AXI 1G/2.5G Ethernet Subsystem可运行于1G和2.5G线速率,对GT时钟有严格研究,按照官方数据手册,运行1G线速率时,GT差分时钟必须为125M,运行2.5G线速率时,GT差分时钟必须为312.5M,如下:
在这里插入图片描述

QT上位机和源码

PC端接收网络视频,并运行QT上位机接收显示视频;我们提供和UDP通信协议相匹配的QT抓图显示上位机及其源代码,目录如下:
在这里插入图片描述
在这里插入图片描述
我们的QT目前仅支持1280x720分辨率的视频抓图显示,但同时预留了1080P接口,对QT开发感兴趣的朋友可以尝试修改代码以适应1080P,因为QT在这里只是验证工具,不是本工程的重点,所以不再过多赘述;

工程源码架构

本博客提供3套工程源码,以工程源码1为例,vivado Block Design设计如下,其他工程与之类似,Block Design设计为图像缓存架构的部分:
在这里插入图片描述
以工程源码1为例,使工程源码架构如下,其他工程与之类似:
在这里插入图片描述
FDMA图像缓存架构虽然不需要SDK配置,但FDMA的AXI4接口时钟由Zynq提供,所以需要运行SDK程序才能启动Zynq,从而为PL端逻辑提供时钟;由于不需要SDK配置,所以SDK软件代码就变得极度简单,只需运行一个“Hello World”即可,如下:
在这里插入图片描述

4、工程源码1详解–>PHY芯片以太网输出方案

开发板FPGA型号:Xilinx-Zynq7100–xc7z100ffg900-2;
开发环境:Vivado2019.1;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:RJ45网口,分辨率1280x720@60Hz;
图像缩放方案:自研纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到1280x720;
图像缓存方案:自研FDMA方案;
图像缓存介质:PS端DDR3;
以太网输出方案:PHY芯片以太网输出;
PHY芯片:RTL8211E,延时模式,RGMII接口;
PC端接收方案:QT上位机;
工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI转网口的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、工程源码2详解–>1G/2.5G Ethernet PCS/PMA or SGMII以太网输出方案

开发板FPGA型号:Xilinx-Zynq7100–xc7z100ffg900-2;
开发环境:Vivado2019.1;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:SFP光口,分辨率1280x720@60Hz;
图像缩放方案:自研纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到1280x720;
图像缓存方案:自研FDMA方案;
图像缓存介质:PS端DDR3;
以太网输出方案:1G/2.5G Ethernet PCS/PMA or SGMII+Tri Mode Ethernet MAC以太网输出;
PC端接收方案:QT上位机;
工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI转网口的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、工程源码3详解–>AXI 1G/2.5G Ethernet Subsystem以太网输出方案

开发板FPGA型号:Xilinx-Zynq7100–xc7z100ffg900-2;
开发环境:Vivado2019.1;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:SFP光口,分辨率1280x720@60Hz;
图像缩放方案:自研纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到1280x720;
图像缓存方案:自研FDMA方案;
图像缓存介质:PS端DDR3;
以太网输出方案:AXI 1G/2.5G Ethernet Subsystem以太网输出;
PC端接收方案:QT上位机;
工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI转网口的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

7、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

8、上板调试验证

准备工作

需要准备的器材如下:
FPGA开发板;
SDI摄像头或HDMI转SDI盒子;
SFP转网口模块(电口);
网线;
我的开发板了连接如下:
在这里插入图片描述
QT上位机配置如下:
在这里插入图片描述

输出视频演示

以工程1,3G-SDI输入图像缩放转网络输出为例,输出如下:

3G-SDI输入图像缩放转网络输出

9、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/42485.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024年全国青少年信息素养大赛复赛及决赛、我知道的有这些

周末两天2024年全国青少年信息素养大赛复赛部分赛区已经结束,还没有考试的同学加紧备考后面的2次,成绩预计(7月13日、7月20日两次考试)结束之后的2周左右出,2024年全国青少年信息素养大赛决赛将在2024年8月16日-20日在…

解决:Flink向kafka写数据使用Producer精准一次(EXACTLY_ONCE)异常

在使用flink向kafka写入数据报错:Caused by: org.apache.kafka.common.KafkaException: Unexpected error in InitProducerIdResponse; The transaction timeout is larger than the maximum value allowed by the broker (as configured by transaction.max.timeou…

文献解读-基准与方法研究-第十六期|《GeneMind 公司的 GenoLab M 测序平台 WGS 和 WES 数据基准测试》

关键词:基准与方法研究;基因测序;变异检测; 文献简介 标题(英文):Accuracy benchmark of the GeneMind GenoLab M sequencing platform for WGS and WES analysis标题(中文&#xf…

差分+前缀和习题集

&#xff08;luogu题号&#xff09; P6568 [NOI Online #3 提高组] 水壶 思路分析 前缀和优化问题。 其实题意就是让你求有k1个数的区间和最大值&#xff0c;那么直接前缀和优化&#xff0c;就可以通过本题。 代码 #include<bits/stdc.h> using namespace std;const in…

机器学习——关于极大似然估计法的一些个人思考

最近在回顾机器学习的一些相关理论知识&#xff0c;回顾到极大似然法时&#xff0c;对于极大似然法中的一些公式有些迷糊了&#xff0c;所以本文主要想记录并分享一下个人关于极大似然估计法的一些思考&#xff0c;如果有误&#xff0c;请见谅&#xff0c;欢迎一起前来探讨。当…

【Linux】升级FastJSON版本-jar

摘要 在长期运行的应用服务器上&#xff0c;近期的安全漏洞扫描揭示了fastjson组件存在潜在的安全隐患&#xff08;FastJSON是一个Java 语言实现的 JSON 解析器和生成器。FastJSON存在远程代码执行漏洞&#xff0c;恶意攻击者可以通过此漏洞远程执行恶意代码来入侵服务器&…

Dynadot 2024年第一季度回顾

关于Dynadot Dynadot是通过ICANN认证的域名注册商&#xff0c;自2002年成立以来&#xff0c;服务于全球108个国家和地区的客户&#xff0c;为数以万计的客户提供简洁&#xff0c;优惠&#xff0c;安全的域名注册以及管理服务。 Dynadot平台操作教程索引&#xff08;包括域名邮…

java进程把服务器CPU打满问题排查

1、top命令定位问题进程 2、查看进程的所有线程信息&#xff0c;记下占用最高的进程 top -Hp 38080553、将第2步得到的线程号转化为十六进制 printf %x\n 38080594、结果里搜索 jstack 3808055|grep -A 10 3a1b3b5、定位问题 根据上步搜索到的结果&#xff0c;可以看到是GC…

关闭这八个电脑设置,保护个人隐私

你知道吗&#xff1f;电脑可能一直在偷窥你的小秘密。朋友们&#xff0c;一定要记得关闭这8个电脑设置哦&#xff0c;这样可以有效地保护我们的个人隐私。 按住键盘Windows键加i键&#xff0c;快速打开Windows设置。然后点击隐私选项。 我们来看基本的常规设置。里面有四个设置…

在表格中选中el-radio后, 怎么获取选中的这一行的所有数据?

演示: 图中, 选中这行数据后, 怎么获取到当前的数据? 代码: <tr v-for"item in gridData"><td><input type"radio" v-model"checkout" change"getDateFn" :data-type"item.articleType" :data-channelNam…

百川工作手机实现销售管理微信监控系统

在瞬息万变的商业战场中&#xff0c;每一分效率的提升都是企业制胜的关键。传统销售管理模式已难以满足现代企业对精准、高效、合规的迫切需求。今天&#xff0c;让我们一同探索如何利用工作手机这一创新工具&#xff0c;为您的销售团队装上智能翅膀&#xff0c;开启销售管理的…

基于springboot+vue实现的厨艺交流平台(文末源码+Lw)093

93基于SpringBootVue的实现的厨艺交流平台&#xff08;源码数据库万字Lun文流程图ER图结构图演示视频软件包&#xff09; 系统功能&#xff1a; 这次开发的厨艺交流平台功能有个人中心&#xff0c;食材分类管理&#xff0c;用户管理&#xff0c;菜品分类管理&#xff0c;菜谱信…

解锁敦煌网成功秘籍:批量注册买家号测评的高效策略

敦煌网&#xff08;DHgate&#xff09;作为一个跨境电商平台&#xff0c;搭建境外本土网络环境并实现批量注册买家号下单&#xff0c;需要遵循一系列严谨的步骤和考虑多个关键因素。以下是一个概括性的指南&#xff1a; 一、环境要求 国外服务器&#xff1a;首先&#xff0c;…

HumbleBundle7月虚幻捆绑包30件军事题材美术模型沙漠自然环境大逃杀模块化建筑可定制武器包二战现代坦克飞机道具丧尸士兵角色模型20240705

HumbleBundle7月虚幻捆绑包30件军事题材美术模型沙漠自然环境大逃杀模块化建筑可定制武器包二战现代坦克飞机道具丧尸士兵角色模型202407051607 这次HumbleBundle捆绑包是UE虚幻军事题材的&#xff0c;内容非常多。 有军事基地、赛博朋克街区、灌木丛景观环境等 HB捆绑包虚幻…

深度学习的数学PDF

链接: https://pan.baidu.com/s/1_jScZ7dcyAWGqbrad6bbCQ?pwd9gj9 提取码: 9gj9 复制这段内容后打开百度网盘手机App&#xff0c;操作更方便哦

【苍穹外卖】Day2 手把手敲完细节

目录 1. 新增员工 1.1 需求分析和设计 1.2 代码开发 ①定义DTO类&#xff1a;(在sky-pojo里&#xff09; ②EmployeeController中创建新增员工方法save() ③EmployeeService里声明save方法&#xff08;altenter&#xff09; ④EmployeeServiceImpl中实现save方法 ⑤在E…

顶刊文献阅读及代码复现

前提:每个无人机都有 (i)自己的机载计算机,用于执行控制其自身动作所需的计算 (ii)自己的传感器系统,用于测量相对位置和速度, (iii)自己的通信设备,用于与相邻代理进行数据交换。 模型:短期的排斥力、中间范围的速度一致性和长距离的吸引力

通过PLC地址来切换威纶通触摸屏界面

Step 1 元件-PLC控制 Step 2 新增 选择设备 选择切换基本窗口功能 选择触发地址 Step 3 离线仿真测试 在数值框中输入对应的页面号 可以看到页面可以正常切换 分享创作不易&#xff0c;请多多支持&#xff0c;点赞、收藏、关注&#xff01; Ending~

昇思Mindspore25天学习打卡Day20:DCGAN生成漫画头像

昇思Mindspore25天学习打卡Day20&#xff1a;DCGAN生成漫画头像 1 GAN基础原理2 DCGAN原理3 数据准备与处理数据处理 4 构造网络4.1 生成器4.2 判别器 5 模型训练损失函数优化器训练模型 6 结果展示7 训练结束打上标签和时间 在下面的教程中&#xff0c;我们将通过示例代码说明…

基于STM主题模型的主题提取分析-完整代码数据

直接看结果: 代码: import re from collections import defaultdict import random import matplotlib.pyplot as plt import numpy as npimport pandas as pd import numpy as np import re from sklearn.feature_extraction.text import CountVectorizer from nltk.corpus…