免费白嫖A100活动开始啦,InternLM + LlamaIndex RAG 实践

内容来源:

Docs

前置知识:

检索增强生成(Retrieval Augmented Generation,RAG)

LlamaIndex

LlamaIndex 是一个上下文增强的 LLM 框架,旨在通过将其与特定上下文数据集集成,增强大型语言模型(LLMs)的能力。

xtuner

书生集成的微调,测试大模型平台

环境搭建:

创建环境

服务器已经预设好了conda环境,输入书生服务器封装bash代码运行,激活环境,如下:

studio-conda -t llamaindex -o pytorch-2.1.2
conda activate llamaindex 
pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0cd ~
mkdir llamaindex_demo
mkdir model
cd ~/llamaindex_demo
touch download_hf.py
vim download_hf.py

下载RAG模型:

键入I,表示输入,在download_hf.py输入:

import os# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')

运行下载:

conda activate llamaindex
python download_hf.py

下载nltk资源:

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages
cd nltk_data
mv packages/*  ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip

LlamaIndex HuggingFaceLLM

cd ~/model
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/ ./
cd ~/llamaindex_demo
touch llamaindex_internlm.py
vim llamaindex_internlm.py
#点击i 复制一下代码
#from llama_index.llms.huggingface import HuggingFaceLLM
#from llama_index.core.llms import ChatMessage
#llm = HuggingFaceLLM(
#    model_name="/root/model/internlm2-chat-1_8b",
#    tokenizer_name="/root/model/internlm2-chat-1_8b",
#    model_kwargs={"trust_remote_code":True},
#    tokenizer_kwargs={"trust_remote_code":True}
#)#rsp = llm.chat(messages=[ChatMessage(content="xtuner是什么?")])
#print(rsp)#输入完成
#点击ESC
#:wq
#保存conda activate llamaindex
cd ~/llamaindex_demo/
python llamaindex_internlm.py

这里在测试使用大模型是否正常输出,并且跟后续加入RAG后效果对比

conda activate llamaindex
pip install llama-index-embeddings-huggingface llama-index-embeddings-instructor
cd ~/llamaindex_demo
mkdir data
cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./
cd ~/llamaindex_demo
touch llamaindex_RAG.py
#写入下面python代码
conda activate llamaindex
cd ~/llamaindex_demo/
python llamaindex_RAG.py
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settingsfrom llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLMembed_model = HuggingFaceEmbedding(model_name="/root/model/sentence-transformer"
)Settings.embed_model = embed_modelllm = HuggingFaceLLM(model_name="/root/model/internlm2-chat-1_8b",tokenizer_name="/root/model/internlm2-chat-1_8b",model_kwargs={"trust_remote_code":True},tokenizer_kwargs={"trust_remote_code":True}
)
Settings.llm = llmdocuments = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")print(response)

关卡任务

完成以下任务,并将实现过程记录截图:

  • 通过 llamaindex 运行 InternLM2 1.8B,询问“你是谁”,将运行结果截图。

  • 通过 llamaindex 实现知识库检索,询问两个问题将运行结果截图。

    • 问题1:xtuner是什么?

    • 问题2:xtuner支持那些模型?

完成作业10%RAG是不够的,但是都到这里了 直接向助教申请30%资源:

/root/.conda/envs/llamaindex/bin/python /root/data/data/llamaindex_RAG.py
/root/.conda/envs/llamaindex/lib/python3.10/site-packages/pydantic/_internal/_fields.py:161: UserWarning: Field "model_id" has conflict with protected namespace "model_".You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ()`.warnings.warn(
Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:39<00:00, 19.95s/it]
Some parameters are on the meta device device because they were offloaded to the cpu.
Traceback (most recent call last):File "/root/data/data/llamaindex_RAG.py", line 23, in <module>response = query_engine.query("xtuner是什么?")File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/instrumentation/dispatcher.py", line 230, in wrapperresult = func(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/base/base_query_engine.py", line 52, in queryquery_result = self._query(str_or_query_bundle)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/instrumentation/dispatcher.py", line 230, in wrapperresult = func(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/query_engine/retriever_query_engine.py", line 190, in _queryresponse = self._response_synthesizer.synthesize(File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/instrumentation/dispatcher.py", line 230, in wrapperresult = func(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/response_synthesizers/base.py", line 241, in synthesizeresponse_str = self.get_response(File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/instrumentation/dispatcher.py", line 230, in wrapperresult = func(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/response_synthesizers/compact_and_refine.py", line 43, in get_responsereturn super().get_response(File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/instrumentation/dispatcher.py", line 230, in wrapperresult = func(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/response_synthesizers/refine.py", line 183, in get_responseresponse = self._give_response_single(File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/response_synthesizers/refine.py", line 238, in _give_response_singleprogram(File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/instrumentation/dispatcher.py", line 230, in wrapperresult = func(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/response_synthesizers/refine.py", line 84, in __call__answer = self._llm.predict(File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/instrumentation/dispatcher.py", line 230, in wrapperresult = func(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/llms/llm.py", line 438, in predictresponse = self.complete(formatted_prompt, formatted=True)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/instrumentation/dispatcher.py", line 230, in wrapperresult = func(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/llms/callbacks.py", line 429, in wrapped_llm_predictf_return_val = f(_self, *args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/llama_index/llms/huggingface/base.py", line 358, in completetokens = self._model.generate(File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_contextreturn func(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/transformers/generation/utils.py", line 1758, in generateresult = self._sample(File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/transformers/generation/utils.py", line 2397, in _sampleoutputs = self(File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_implreturn self._call_impl(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_implreturn forward_call(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/accelerate/hooks.py", line 169, in new_forwardoutput = module._old_forward(*args, **kwargs)File "/root/.cache/huggingface/modules/transformers_modules/internlm2-chat-1_8b/modeling_internlm2.py", line 1060, in forwardlogits = self.output(hidden_states)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_implreturn self._call_impl(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_implreturn forward_call(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/accelerate/hooks.py", line 169, in new_forwardoutput = module._old_forward(*args, **kwargs)File "/root/.conda/envs/llamaindex/lib/python3.10/site-packages/torch/nn/modules/linear.py", line 114, in forwardreturn F.linear(input, self.weight, self.bias)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 316.00 MiB. GPU 0 has a total capacty of 7.99 GiB of which 198.00 MiB is free. Process 1736952 has 35.84 GiB memory in use. Process 364582 has 7.80 GiB memory in use. Of the allocated memory 7.25 GiB is allocated by PyTorch, and 63.81 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

有RAG和没RAG结果对比:

任务截图

将任务写入py

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.core.llms import ChatMessage
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLMembed_model = HuggingFaceEmbedding(model_name="/root/model/sentence-transformer"
)Settings.embed_model = embed_modelllm = HuggingFaceLLM(model_name="/root/model/internlm2-chat-1_8b",tokenizer_name="/root/model/internlm2-chat-1_8b",model_kwargs={"trust_remote_code":True},tokenizer_kwargs={"trust_remote_code":True}
)
Settings.llm = llm
rsp = llm.chat(messages=[ChatMessage(content="你是谁?")])
print("你是谁?",rsp)
documents = SimpleDirectoryReader("/root/data/data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")
print("xtuner是什么?",response)
response = query_engine.query("xtuner支持哪些模型")
print("xtuner支持哪些模型",response)

你是谁?

xtuner是什么?(rag结果)

xtuner支持哪些模型 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/42291.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何选择可靠的三方支付公司?

选择可靠的三方支付公司需要考虑以下几个方面&#xff1a; - 资质和信誉&#xff1a;确保支付公司具有合法的资质和良好的信誉&#xff0c;可以查看其营业执照、支付业务许可证等相关证件。 - 安全性&#xff1a;了解支付公司的安全措施&#xff0c;如加密技术、风险控制体系等…

【康复学习--LeetCode每日一题】2965. 找出缺失和重复的数字

题目&#xff1a; 给你一个下标从 0 开始的二维整数矩阵 grid&#xff0c;大小为 n * n &#xff0c;其中的值在 [1, n2] 范围内。除了 a 出现 两次&#xff0c;b 缺失 之外&#xff0c;每个整数都 恰好出现一次 。 任务是找出重复的数字a 和缺失的数字 b 。 返回一个下标从 0…

探索回归模型的奥秘:从理论到实践,以PlugLink为例

回归模型初探 回归分析&#xff0c;顾名思义&#xff0c;旨在探索两个或多个变量之间的关系&#xff0c;特别是当一个变量&#xff08;因变量&#xff09;依赖于其他一个或多个变量&#xff08;自变量&#xff09;时&#xff0c;它能够预测因变量的值。常见的回归模型包括线性…

spring web flux 记录用户日志及异常日志

package cn.finopen.boot.autoconfigure.aop;Configuration EnableAspectJAutoProxy Order public class EndpointLogAopConfiguration {/*** 请求方法白名单*/private static final String[] METHOD_WHITE_LIST {"get", "unreadCount", "find"…

MySQL8之mysql-community-common的作用

在MySQL 8中&#xff0c;mysql-community-common是一个软件包&#xff0c;它提供了MySQL服务器和客户端库所需的一些共同文件。具体来说&#xff0c;mysql-community-common的作用包括但不限于以下几点&#xff1a; 1. 提供基础配置和错误信息 错误信息和字符集包&#xff1a…

决策树算法简单介绍:原理和方案实施

决策树算法介绍&#xff1a;原理和方案实施 决策树&#xff08;Decision Tree&#xff09;是一种常用的机器学习算法&#xff0c;它既可以用于分类任务&#xff0c;也可以用于回归任务。由于其直观性和解释性&#xff0c;决策树在数据分析和模型构建中得到了广泛的应用。本文将…

如何防御DDoS攻击

如何防御DDoS攻击 1.硬件层面 使用高性能的防火墙 高性能的防火墙可以有效地过滤DDoS攻击流量&#xff0c;从而提高网络的抗攻击能力。企业可以使用性能强大的防火墙来防范DDoS攻击。 使用流量清洗设备 流量清洗设备可以实时监测网络流量&#xff0c;发现并过滤DDoS攻击流量&am…

顶顶顶顶顶顶顶顶顶顶顶顶顶顶顶顶顶顶顶

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…

Spark操作Excel最佳实践

Spark操作Excel最佳实践 1、背景描述2、Apache POI与Spark-Excel2.1、Apache POI简介2.2、Spark-Excel简介3、Spark读取Excel3.1、导入依赖3.2、使用Apache POI3.3、使用Spark-Excel1、背景描述 数据开发中通常会涉及到Excel的处理。Java和Apache Spark都不支持读取Excel文件,…

挖K脚本检测指南

免责声明:本文仅做分享... 目录 挖K样本-Win&Linux-危害&定性 Linux-Web 安全漏洞导致挖K事件 Windows-系统口令爆破导致挖K事件 --怎么被挖K了??? 已经取得了权限. 挖K样本-Win&Linux-危害&定性 危害&#xff1a;CPU 拉满&#xff0c;网络阻塞&…

在Linux下使用Docker部署chirpstack

目录 一、前言 二、chirpstack 1、chirpstack是什么 2、chirpstack组件 3、为什么选择Docker部署 三、Linux下部署过程 四、web界面部署过程 一、前言 本篇文章我是在Linux下使用 Docker 进行部署chirpstack&#xff0c;chirpstack采用的是v4 版本&#xff0c;v4 版本 与…

Logstash常用的filter四大插件

以博客<ELK日志分析系统概述及部署>中实验结果为依据 补充&#xff1a;如何用正则表达式匹配一个ipv4地址 &#xff08;[0-9] | [1-9][0-9] | 1[0-9][0-9] | 2[04][0-9] | 25[0-5]&#xff09;\.&#xff08;[0-9] | [1-9][0-9] | 1[0-9][0-9] | 2[04][0-9] | 25[0-5]&a…

C++基础语法:嵌套类(内部类)

前言 "打牢基础,万事不愁" .C的基础语法的学习 引入 嵌套类的理解和使用 嵌套类(内部类)的特征 嵌套类是在类里面定义的类.class里嵌套另一个class,又称内部类(这种说法更形象) 1>内部类除了定义在外部类内部,和其他类没有太大区别.内部类对于外部类自动"可…

基于Java的数码论坛系统设计与实现

你好&#xff0c;我是计算机领域的研究者。如果你对数码论坛系统开发感兴趣或有相关需求&#xff0c;欢迎联系我。 开发语言&#xff1a; Java 数据库&#xff1a; MySQL 技术&#xff1a; Java技术、MySQL数据库、B/S架构、SpringBoot框架 工具&#xff1a; Eclipse、MySQ…

HJ41 称砝码下

接上文&#xff0c;HJ41 称砝码 更新acd代码&#xff0c;牛客代码如下 #include <stdio.h> #include <stdlib.h> #include <string.h>int calculateWeight(int *weight, int weightLen, int *num, int numLen) {int array[20001] {0};int hash[300001] {0…

css 文件重复类样式删除

上传文件 进行无关 className 删除 <div style"display: flex;"><input type"file" change"handleFileUpload" /><el-button click"removeStyles" :disabled"!fileContent">Remove Styles and Download&…

navigation运动规划学习笔记

DWA 动态窗口算法(Dynamic Window Approaches, DWA) 是基于预测控制理论的一种次优方法,因其在未知环境下能够安全、有效的避开障碍物, 同时具有计算量小, 反应迅速、可操作性强等特点。 DWA算法属于局部路径规划算法。 DWA算法的核心思想是根据移动机器人当前的位置状态和速…

antd a-select下拉框样式修改 vue3 亲测有效

记录一下遇到的问题 1.遇到问题&#xff1a; 使用到Vue3 Ant Design of Vue 3.2.20&#xff0c;但因为项目需求样式&#xff0c;各种查找资料都未能解决; 2.解决问题&#xff1a; ①我们审查元素可以看到&#xff0c;下拉框是在body中的; ①在a-select 元素上添加dropdownCla…

运行时异常与一般异常的异同

运行时异常与一般异常的异同 1、运行时异常&#xff08;Runtime Exception&#xff09;1.1 特点 2、 一般异常&#xff08;Checked Exception&#xff09;2.1 特点 3、异同点总结3.1 相同点3.2 不同点 4、总结 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷…

【全网最全最详细】Tomcat 面试题大全

目录 一、说一说Tomcat的启动流程 二、Tomcat中有哪些类加载器? 三、为什么Tomcat可以把线程数设置为200,而不是N+1? 四、Tomcat处理请求的过程怎样的? 五、说一说Servlet的生命周期 六、过滤器和拦截器的区别? 七、介绍一下Tomcat的IO模型 八、说一说Tomcat的类加…