昇思25天训练营Day11 - 基于 MindSpore 实现 BERT 对话情绪识别

模型简介

BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers),它是Google于2018年末开发并发布的一种新型语言模型。与BERT模型相似的预训练语言模型例如问答、命名实体识别、自然语言推理、文本分类等在许多自然语言处理任务中发挥着重要作用。模型是基于Transformer中的Encoder并加上双向的结构,因此一定要熟练掌握Transformer的Encoder的结构。

BERT模型的主要创新点都在pre-train方法上,即用了Masked Language Model和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation。

在用Masked Language Model方法训练BERT的时候,随机把语料库中15%的单词做Mask操作。对于这15%的单词做Mask操作分为三种情况:80%的单词直接用[Mask]替换、10%的单词直接替换成另一个新的单词、10%的单词保持不变。

因为涉及到Question Answering (QA) 和 Natural Language Inference (NLI)之类的任务,增加了Next Sentence Prediction预训练任务,目的是让模型理解两个句子之间的联系。与Masked Language Model任务相比,Next Sentence Prediction更简单些,训练的输入是句子A和B,B有一半的几率是A的下一句,输入这两个句子,BERT模型预测B是不是A的下一句。

BERT预训练之后,会保存它的Embedding table和12层Transformer权重(BERT-BASE)或24层Transformer权重(BERT-LARGE)。使用预训练好的BERT模型可以对下游任务进行Fine-tuning,比如:文本分类、相似度判断、阅读理解等。

对话情绪识别(Emotion Detection,简称EmoTect),专注于识别智能对话场景中用户的情绪,针对智能对话场景中的用户文本,自动判断该文本的情绪类别并给出相应的置信度,情绪类型分为积极、消极、中性。 对话情绪识别适用于聊天、客服等多个场景,能够帮助企业更好地把握对话质量、改善产品的用户交互体验,也能分析客服服务质量、降低人工质检成本。

下面以一个文本情感分类任务为例子来说明BERT模型的整个应用过程。

import osimport mindspore
from mindspore.dataset import text, GeneratorDataset, transforms
from mindspore import nn, contextfrom mindnlp._legacy.engine import Trainer, Evaluator
from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback
from mindnlp._legacy.metrics import Accuracy
# prepare dataset
class SentimentDataset:"""Sentiment Dataset"""def __init__(self, path):self.path = pathself._labels, self._text_a = [], []self._load()def _load(self):with open(self.path, "r", encoding="utf-8") as f:dataset = f.read()lines = dataset.split("\n")for line in lines[1:-1]:label, text_a = line.split("\t")self._labels.append(int(label))self._text_a.append(text_a)def __getitem__(self, index):return self._labels[index], self._text_a[index]def __len__(self):return len(self._labels)

数据集

这里提供一份已标注的、经过分词预处理的机器人聊天数据集,来自于百度飞桨团队。数据由两列组成,以制表符('\t')分隔,第一列是情绪分类的类别(0表示消极;1表示中性;2表示积极),第二列是以空格分词的中文文本,如下示例,文件为 utf8 编码。

label--text_a

0--谁骂人了?我从来不骂人,我骂的都不是人,你是人吗 ?

1--我有事等会儿就回来和你聊

2--我见到你很高兴谢谢你帮我

这部分主要包括数据集读取,数据格式转换,数据 Tokenize 处理和 pad 操作。

# download dataset
!wget https://baidu-nlp.bj.bcebos.com/emotion_detection-dataset-1.0.0.tar.gz -O emotion_detection.tar.gz
!tar xvf emotion_detection.tar.gz

 

数据加载和数据预处理¶

新建 process_dataset 函数用于数据加载和数据预处理,具体内容可见下面代码注释。

import numpy as npdef process_dataset(source, tokenizer, max_seq_len=64, batch_size=32, shuffle=True):is_ascend = mindspore.get_context('device_target') == 'Ascend'column_names = ["label", "text_a"]dataset = GeneratorDataset(source, column_names=column_names, shuffle=shuffle)# transformstype_cast_op = transforms.TypeCast(mindspore.int32)def tokenize_and_pad(text):if is_ascend:tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)else:tokenized = tokenizer(text)return tokenized['input_ids'], tokenized['attention_mask']# map datasetdataset = dataset.map(operations=tokenize_and_pad, input_columns="text_a", output_columns=['input_ids', 'attention_mask'])dataset = dataset.map(operations=[type_cast_op], input_columns="label", output_columns='labels')# batch datasetif is_ascend:dataset = dataset.batch(batch_size)else:dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),'attention_mask': (None, 0)})return dataset

昇腾NPU环境下暂不支持动态Shape,数据预处理部分采用静态Shape处理:

from mindnlp.transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
tokenizer.pad_token_id
dataset_train = process_dataset(SentimentDataset("data/train.tsv"), tokenizer)
dataset_val = process_dataset(SentimentDataset("data/dev.tsv"), tokenizer)
dataset_test = process_dataset(SentimentDataset("data/test.tsv"), tokenizer, shuffle=False)
dataset_train.get_col_names()
['input_ids', 'attention_mask', 'labels']
print(next(dataset_train.create_tuple_iterator()))
[Tensor(shape=[32, 64], dtype=Int64, value=
[[ 101,  872,  679 ...    0,    0,    0],[ 101, 1557, 8024 ...    0,    0,    0],[ 101, 6929, 1168 ...    0,    0,    0],...[ 101, 2828,  800 ...    0,    0,    0],[ 101, 1521, 1506 ...    0,    0,    0],[ 101, 6820, 1962 ...    0,    0,    0]]), Tensor(shape=[32, 64], dtype=Int64, value=
[[1, 1, 1 ... 0, 0, 0],[1, 1, 1 ... 0, 0, 0],[1, 1, 1 ... 0, 0, 0],...[1, 1, 1 ... 0, 0, 0],[1, 1, 1 ... 0, 0, 0],[1, 1, 1 ... 0, 0, 0]]), Tensor(shape=[32], dtype=Int32, value= [0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 2, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0])]

模型构建

通过 BertForSequenceClassification 构建用于情感分类的 BERT 模型,加载预训练权重,设置情感三分类的超参数自动构建模型。后面对模型采用自动混合精度操作,提高训练的速度,然后实例化优化器,紧接着实例化评价指标,设置模型训练的权重保存策略,最后就是构建训练器,模型开始训练。

from mindnlp.transformers import BertForSequenceClassification, BertModel
from mindnlp._legacy.amp import auto_mixed_precision# set bert config and define parameters for training
model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=3)
model = auto_mixed_precision(model, 'O1')optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)
metric = Accuracy()
# define callbacks to save checkpoints
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='bert_emotect', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='bert_emotect_best', auto_load=True)trainer = Trainer(network=model, train_dataset=dataset_train,eval_dataset=dataset_val, metrics=metric,
%%time
# start training
trainer.run(tgt_columns="labels")
The train will start from the checkpoint saved in 'checkpoint'.

Epoch 0: 100%

 302/302 [04:12<00:00,  4.21s/it, loss=0.3291704]

Checkpoint: 'bert_emotect_epoch_0.ckpt' has been saved in epoch: 0.

Evaluate: 100%

 34/34 [00:07<00:00,  1.10s/it]

Evaluate Score: {'Accuracy': 0.9361111111111111}
---------------Best Model: 'bert_emotect_best.ckpt' has been saved in epoch: 0.---------------

Epoch 1: 100%

 302/302 [02:33<00:00,  2.02it/s, loss=0.18864435]

Checkpoint: 'bert_emotect_epoch_1.ckpt' has been saved in epoch: 1.

Evaluate: 100%

 34/34 [00:04<00:00,  7.94it/s]

Evaluate Score: {'Accuracy': 0.9629629629629629}
---------------Best Model: 'bert_emotect_best.ckpt' has been saved in epoch: 1.---------------

Epoch 2: 100%

 302/302 [02:34<00:00,  1.98it/s, loss=0.12532383]

The maximum number of stored checkpoints has been reached.
Checkpoint: 'bert_emotect_epoch_2.ckpt' has been saved in epoch: 2.

Evaluate: 100%

 34/34 [00:04<00:00,  8.05it/s]

Evaluate Score: {'Accuracy': 0.9805555555555555}
---------------Best Model: 'bert_emotect_best.ckpt' has been saved in epoch: 2.---------------

Epoch 3: 100%

 302/302 [02:34<00:00,  1.97it/s, loss=0.08664711]

The maximum number of stored checkpoints has been reached.
Checkpoint: 'bert_emotect_epoch_3.ckpt' has been saved in epoch: 3.

Evaluate: 100%

 34/34 [00:04<00:00,  8.11it/s]

Evaluate Score: {'Accuracy': 0.9916666666666667}
---------------Best Model: 'bert_emotect_best.ckpt' has been saved in epoch: 3.---------------

Epoch 4: 100%

 302/302 [02:34<00:00,  1.97it/s, loss=0.060646668]

The maximum number of stored checkpoints has been reached.
Checkpoint: 'bert_emotect_epoch_4.ckpt' has been saved in epoch: 4.

Evaluate: 100%

 34/34 [00:04<00:00,  7.80it/s]

Evaluate Score: {'Accuracy': 0.9879629629629629}
Loading best model from 'checkpoint' with '['Accuracy']': [0.9916666666666667]...
---------------The model is already load the best model from 'bert_emotect_best.ckpt'.---------------
CPU times: user 22min 1s, sys: 13min 27s, total: 35min 28s
Wall time: 15min 9s

模型验证

将验证数据集加再进训练好的模型,对数据集进行验证,查看模型在验证数据上面的效果,此处的评价指标为准确率。

evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric)
evaluator.run(tgt_columns="labels")

Evaluate: 100%

 33/33 [00:07<00:00,  1.12s/it]

Evaluate Score: {'Accuracy': 0.8947876447876448}

模型推理¶

遍历推理数据集,将结果与标签进行统一展示。

dataset_infer = SentimentDataset("data/infer.tsv")
def predict(text, label=None):label_map = {0: "消极", 1: "中性", 2: "积极"}text_tokenized = Tensor([tokenizer(text).input_ids])logits = model(text_tokenized)predict_label = logits[0].asnumpy().argmax()info = f"inputs: '{text}', predict: '{label_map[predict_label]}'"if label is not None:info += f" , label: '{label_map[label]}'"print(info)
from mindspore import Tensorfor label, text in dataset_infer:predict(text, label)
inputs: '我 要 客观', predict: '中性' , label: '中性'
inputs: '靠 你 真是 说 废话 吗', predict: '消极' , label: '消极'
inputs: '口嗅 会', predict: '中性' , label: '中性'
inputs: '每次 是 表妹 带 窝 飞 因为 窝路痴', predict: '中性' , label: '中性'
inputs: '别说 废话 我 问 你 个 问题', predict: '消极' , label: '消极'
inputs: '4967 是 新加坡 那 家 银行', predict: '中性' , label: '中性'
inputs: '是 我 喜欢 兔子', predict: '积极' , label: '积极'
inputs: '你 写 过 黄山 奇石 吗', predict: '中性' , label: '中性'
inputs: '一个一个 慢慢来', predict: '中性' , label: '中性'
inputs: '我 玩 过 这个 一点 都 不 好玩', predict: '消极' , label: '消极'
inputs: '网上 开发 女孩 的 QQ', predict: '中性' , label: '中性'
inputs: '背 你 猜 对 了', predict: '中性' , label: '中性'
inputs: '我 讨厌 你 , 哼哼 哼 。 。', predict: '消极' , label: '消极'

自定义推理数据集

自己输入推理数据,展示模型的泛化能力。

predict("家人们咱就是说一整个无语住了 绝绝子叠buff")
inputs: '家人们咱就是说一整个无语住了 绝绝子叠buff', predict: '中性'

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/41732.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

56、最近邻向量量化(LVQ) 网络训练对输入向量进行分类

1、LVQ 网络训练对输入向量进行分类简介 1&#xff09;简介 LVQ&#xff08;最近邻向量量化&#xff09;是一种简单而有效的神经网络模型&#xff0c;用于对输入向量进行分类。LVQ网络通过学习一组原型向量&#xff08;也称为代码矢量或参考向量&#xff09;&#xff0c;来表…

HTML5 WebSocket技术使用详解

HTML5 WebSocket API 提供了一种在单个连接上进行全双工通信的方式。这意味着客户端和服务器可以同时发送和接收数据&#xff0c;而不需要像传统的 HTTP 请求那样进行多次请求和响应的轮询。WebSocket 允许更实时的交互&#xff0c;非常适合需要快速、连续数据交换的应用场景&a…

SAP Build4-office 操作

1. 邮件操作 1.1 前期准备 商店中找到outlook的sdk&#xff0c;添加到build中 在process中添加outlook的SDK 电脑上装了outlook的邮箱并且已经登录 我用个人foxmail邮箱向outlook发了一封带附件的销售订单邮件&#xff0c;就以此作为例子 1.2 搜索邮件 搜索有两层&…

计算机视觉、目标检测、视频分析的过去和未来:目标检测从入门到精通 ------ YOLOv8 到 多模态大模型处理视觉基础任务

文章大纲 计算机视觉项目的关键步骤计算机视觉项目核心内容概述步骤1: 确定项目目标步骤2:数据收集和数据标注步骤3:数据增强和拆分数据集步骤4:模型训练步骤5:模型评估和模型微调步骤6:模型测试步骤7:模型部署常见问题目标检测入门什么是目标检测目标检测算法的分类一阶…

CSS实现图片裁剪居中(只截取剪裁图片中间部分,图片不变形)

1.第一种方式&#xff1a;&#xff08;直接给图片设置&#xff1a;object-fit:cover;&#xff09; .imgbox{width: 100%;height:200px;overflow: hidden;position: relative;img{width: 100%;height: 100%; //图片要设置高度display: block;position: absolute;left: 0;right…

OpenCV:解锁计算机视觉的魔法钥匙

OpenCV&#xff1a;解锁计算机视觉的魔法钥匙 在人工智能与图像处理的世界里&#xff0c;OpenCV是一个响当当的名字。作为计算机视觉领域的瑞士军刀&#xff0c;OpenCV以其丰富的功能库、跨平台的特性以及开源的便利性&#xff0c;成为了开发者手中不可或缺的工具。本文将深入…

基于Java+SpringMvc+Vue技术的在线学习交流平台的设计与实现---60页论文参考

博主介绍&#xff1a;硕士研究生&#xff0c;专注于Java技术领域开发与管理&#xff0c;以及毕业项目实战✌ 从事基于java BS架构、CS架构、c/c 编程工作近16年&#xff0c;拥有近12年的管理工作经验&#xff0c;拥有较丰富的技术架构思想、较扎实的技术功底和资深的项目管理经…

AI+若依框架(低代码开发)

提前说明&#xff1a; 文章是实时更新&#xff0c;写了就会更。 文章是黑马视频的笔记&#xff0c;如果要自己学可以点及下面的链接&#xff1a; https://www.bilibili.com/video/BV1pf421B71v/一、若依介绍 1.版本介绍 若依为满足多样化的开发需求&#xff0c;提供了多个版本…

基于jeecgboot-vue3的Flowable流程-集成仿钉钉流程(一)图标svgicon的使用

因为这个项目license问题无法开源&#xff0c;更多技术支持与服务请加入我的知识星球。 1、lowflow这里使用了tsx的动态图标&#xff0c;如下&#xff1a; import ./index.scss import type { CSSProperties, PropType } from vue import { computed, defineComponent, resolv…

MATLAB基础应用精讲-【数模应用】 岭回归(Ridge)(附MATLAB、python和R语言代码实现)

目录 前言 算法原理 数学模型 Ridge 回归的估计量 Ridge 回归与标准多元线性回归的比较 3. Ridge 参数的选择 算法步骤 SPSSPRO 1、作用 2、输入输出描述 3、案例示例 4、案例数据 5、案例操作 6、输出结果分析 7、注意事项 8、模型理论 SPSSAU 岭回归分析案…

Java [ 进阶 ] 深入理解 JVM

✨探索Java基础 深入理解 JVM✨ 深入理解 JVM&#xff1a;结构与垃圾回收机制 Java 虚拟机&#xff08;JVM&#xff09;是 Java 程序运行的核心&#xff0c;了解 JVM 的内部结构和垃圾回收机制对优化 Java 应用性能至关重要。本文将深入探讨 JVM 的结构和垃圾回收机制&#…

支付宝沙箱对接(GO语言)

支付宝沙箱对接 1.1 官网1.2 秘钥生成&#xff08;系统默认&#xff09;1.3 秘钥生成&#xff08;软件生成&#xff09;1.4 golan 安装 SDK1.5 GoLand 代码1.6 前端代码 1.1 官网 沙箱官网: https://open.alipay.com/develop/sandbox/app 秘钥用具下载&#xff1a; https://ope…

序列化、反序列化

java 提供了一种对象序列化的机制&#xff0c;该机制中&#xff0c;一个对象可以被表示为一个字节序列&#xff0c;该字节序列包括该对象的数据、有关对象的类型的信息和存储在对象中数据的类型。 将序列化对象写入文件之后&#xff0c;可以从文件中读取出来&#xff0c;并且对…

Java并发编程-ThreadLocal深入解读及案例实战

文章目录 概述原理使用场景示例最佳实践内存泄漏风险阿里开源组件TransmittableThreadLocal原理和机制使用场景如何使用注意事项ThreadLocal在分布式存储系统edits_log案例中的实践1. 为什么使用`ThreadLocal`?2. 实践案例2.1 缓存日志操作2.2 线程局部的编辑日志状态3. 注意事…

在 Spring 中编写单元测试

单元测试是软件开发过程中不可或缺的一部分&#xff0c;它能有效地提高代码质量&#xff0c;确保代码功能的正确性。在 Spring 应用中&#xff0c;JUnit 和 Mockito 是常用的单元测试工具&#xff0c;而 Spring Test 提供了丰富的测试支持。本文将介绍如何在 Spring 中使用 JUn…

并行处理百万个文件的解析和追加

处理和解析大量文件&#xff0c;尤其是百万级别的文件&#xff0c;是一个复杂且资源密集的任务。为实现高效并行处理&#xff0c;可以使用Python中的多种并行和并发编程工具&#xff0c;比如multiprocessing、concurrent.futures模块以及分布式计算框架如Dask和Apache Spark。这…

物联网时代5G通信技术分析研究一、引言

一、引言 近几年&#xff0c;移动网络技术跟随互联网的不断发展而改革和进步&#xff0c;给平民大众的生活也带来新的尝试与影响。从2G网络的出现&#xff0c;到逐步被社会民众所了解的3G&#xff0c;再到被熟知的且正在服务于大家的4G网络&#xff0c;移动网络技术的发展速度令…

jQuery Mobile 安装指南

jQuery Mobile 安装指南 jQuery Mobile 是一个基于 jQuery 的移动设备友好的网页开发框架,它允许开发者创建响应式网页和应用程序。本指南将详细介绍如何安装 jQuery Mobile,并确保您的开发环境准备好进行移动网页开发。 1. 环境准备 在开始安装 jQuery Mobile 之前,请确…

Mysql系列-Binlog主从同步

原文链接&#xff1a;https://zhuanlan.zhihu.com/p/669450627 一、主从同步概述 mysql主从同步&#xff0c;即MySQL Replication,可以实现将数据从一台数据库服务器同步到多台数据库服务器。MySQL数据库自带主 从同步功能&#xff0c;经过配置&#xff0c;可以实现基于库、表…

B端设计:任何不顾及用户体验的设计,都是在装样子,花架子

B端设计是指面向企业客户的设计&#xff0c;通常涉及产品、服务或系统的界面和功能设计。与C端设计不同&#xff0c;B端设计更注重实用性和专业性&#xff0c;因为它直接影响企业的效率和利益。 在B端设计中&#xff0c;用户体验同样至关重要。不顾及用户体验的设计只是空洞的表…