OpenCV直方图计算函数calcHist的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

功能描述

图像的直方图是一种统计表示方法,用于展示图像中不同像素强度(通常是灰度值或色彩强度)出现的频率分布。具体来说,它将图像的整个色调范围(如0到255对于8位灰度图像)划分为若干个离散的bins(或区间),然后统计每个bin内像素值出现的次数,并以柱状图的形式展示出来。

通过图像的直方图,我们可以直观地了解到图像的亮度分布、对比度信息以及色彩分布情况。例如,如果一个图像的直方图集中在较暗的色调上,说明图像整体偏暗;如果直方图覆盖了较广的范围且分布均匀,表明图像具有良好的动态范围和对比度。

直方图对于图像处理和分析非常重要,常用于自动曝光、图像均衡化(如直方图均衡化)、图像分割、颜色校正等多种图像处理任务中。

calcHist函数

cv::calcHist函数用于计算一个或多个数组的直方图

函数原型1

void cv::calcHist	
(	const Mat * 	images,int 	nimages,const int * 	channels,InputArray 	mask,OutputArray 	hist,int 	dims,const int * 	histSize,const float ** 	ranges,bool 	uniform = true,bool 	accumulate = false 
)		

参数1

  • 参数 images 源图像。它们都应该具有相同的深度,即CV_8U,CV_16U或CV_32F,并且具有相同的尺寸. 每个数组可以有任意数量的通道。

  • 参数 nimages 源图像个数.

  • 参数 channels 计算直方图的各个维度上所选择的通道列表.第一个数组的通道编号从0开始,一直到images[0].channels()-1;第二个数组的通道编号则从images[0].channels()开始,一直到images[0].channels() + images[1].channels()-1,以此类推.
    对于第一个图像数组images[0],其通道编号从0开始,一直到该数组通道数减一。
    第二个图像数组images[1]的通道编号紧接着第一个数组的通道编号之后,从images[0].channels()开始,直到images[0].channels() + images[1].channels()-1。
    同样的规则应用于后续的图像数组,每个数组的通道编号都是紧接在前一个数组的通道编号之后。
    这样的编号方式允许在计算直方图或其他涉及跨多个图像的通道操作时,可以统一地引用所有图像的通道,而不需要单独考虑每个图像的通道编号。这在处理复杂图像分析任务时特别有用,比如计算多图像的联合直方图或特征提取等。

  • 参数 mask 可选参数掩码。如果矩阵不为空,它必须是一个与images[i]相同尺寸的8位数组。非零的掩码元素标记出了将在直方图中计数的数组元素。.

  • 参数hist 输出的直方图,它是一个稠密或稀疏的dims维数组.

  • 参数dims 直方图的维度必须是正数,并且不能超过CV_MAX_DIMS(在当前OpenCV版本中等于32).

  • 参数histSize 在每一维度上的直方图大小的数组。

  • 参数ranges 数组ranges包含了dims个数组,每个数组表示直方图在对应维度上的bin边界。当直方图是均匀的(uniform=true),对于每个维度i,只需要指定第0个直方图bin的下界(包含) L 0 L_0 L0和最后一个binhistSize[i]-1的上界(不包含) U histSize [ i ] − 1 U_{\texttt{histSize}[i]-1} UhistSize[i]1。也就是说,在均匀直方图的情况下,ranges[i]是一个包含2个元素的数组,分别表示该维度上bin的起始和结束边界。
    然而,当直方图是非均匀的(uniform=false),ranges[i]则包含histSize[i]+1个元素: L 0 , U 0 = L 1 , U 1 = L 2 , . . . , U histSize[i] − 2 = L histSize[i] − 1 , U histSize[i] − 1 L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1} L0,U0=L1,U1=L2,...,UhistSize[i]2=LhistSize[i]1,UhistSize[i]1。这里的Lj和Uj分别表示第j个bin的下界和上界。在非均匀直方图中,数组中的元素若不在 L 0 L_0 L0 U histSize[i] − 1 U_{\texttt{histSize[i]}-1} UhistSize[i]1之间,则不会被计入直方图.

  • 参数 uniform 这是一个标志,指示直方图是否为均匀直方图(参见上述说明)

  • 参数 accumulate 累积标志。如果设置了这个标志,那么在分配直方图时,直方图不会在开始时被清零。这个特性使你能够在不同时刻从多组数组中计算单一的直方图,或者随时间更新直方图。

函数原型2

这是一个重载成员函数,提供是为了方便使用。它与上述函数的不同之处仅在于它接受的参数类型。

此版本的函数使用SparseMat作为输出类型。

在OpenCV中,SparseMat是一种专门用于存储稀疏矩阵的容器。与常规的矩阵存储方式相比,SparseMat在存储和处理包含大量零值或无效值的大型矩阵时更加高效。它仅存储非零或有效元素及其位置,从而显著减少了内存占用和计算成本。

void cv::calcHist
(const Mat * 	images,int 	nimages,const int * 	channels,InputArray 	mask,SparseMat & 	hist,int 	dims,const int * 	histSize,const float ** 	ranges,bool 	uniform = true,bool 	accumulate = false 
)		

参数2

  • 参数 images 源图像。它们都应该具有相同的深度,即CV_8U,CV_16U或CV_32F,并且具有相同的尺寸. 每个数组可以有任意数量的通道。

  • 参数 nimages 源图像个数.

  • 参数 channels 计算直方图的各个维度上所选择的通道列表.第一个数组的通道编号从0开始,一直到images[0].channels()-1;第二个数组的通道编号则从images[0].channels()开始,一直到images[0].channels() + images[1].channels()-1,以此类推.
    对于第一个图像数组images[0],其通道编号从0开始,一直到该数组通道数减一。
    第二个图像数组images[1]的通道编号紧接着第一个数组的通道编号之后,从images[0].channels()开始,直到images[0].channels() + images[1].channels()-1。
    同样的规则应用于后续的图像数组,每个数组的通道编号都是紧接在前一个数组的通道编号之后。
    这样的编号方式允许在计算直方图或其他涉及跨多个图像的通道操作时,可以统一地引用所有图像的通道,而不需要单独考虑每个图像的通道编号。这在处理复杂图像分析任务时特别有用,比如计算多图像的联合直方图或特征提取等。

  • 参数 mask 可选参数掩码。如果矩阵不为空,它必须是一个与images[i]相同尺寸的8位数组。非零的掩码元素标记出了将在直方图中计数的数组元素。.

  • 参数hist 输出的直方图,使用SparseMat作为输出类型.

  • 参数dims 直方图的维度必须是正数,并且不能超过CV_MAX_DIMS(在当前OpenCV版本中等于32).

  • 参数histSize 在每一维度上的直方图大小的数组。

  • 参数ranges 数组ranges包含了dims个数组,每个数组表示直方图在对应维度上的bin边界。当直方图是均匀的(uniform=true),对于每个维度i,只需要指定第0个直方图bin的下界(包含) L 0 L_0 L0和最后一个binhistSize[i]-1的上界(不包含) U histSize [ i ] − 1 U_{\texttt{histSize}[i]-1} UhistSize[i]1。也就是说,在均匀直方图的情况下,ranges[i]是一个包含2个元素的数组,分别表示该维度上bin的起始和结束边界。
    然而,当直方图是非均匀的(uniform=false),ranges[i]则包含histSize[i]+1个元素: L 0 , U 0 = L 1 , U 1 = L 2 , . . . , U histSize[i] − 2 = L histSize[i] − 1 , U histSize[i] − 1 L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1} L0,U0=L1,U1=L2,...,UhistSize[i]2=LhistSize[i]1,UhistSize[i]1。这里的Lj和Uj分别表示第j个bin的下界和上界。在非均匀直方图中,数组中的元素若不在 L 0 L_0 L0 U histSize[i] − 1 U_{\texttt{histSize[i]}-1} UhistSize[i]1之间,则不会被计入直方图.

  • 参数 uniform 这是一个标志,指示直方图是否为均匀直方图(参见上述说明)

  • 参数 accumulate 累积标志。如果设置了这个标志,那么在分配直方图时,直方图不会在开始时被清零。这个特性使你能够在不同时刻从多组数组中计算单一的直方图,或者随时间更新直方图。

函数原型3

这是一个重载的成员函数,提供以方便使用。它与上述函数的不同之处仅在于它接受的参数类型。

此版本的函数仅支持均匀直方图。

ranges参数可以是一个空向量,或者是一个包含histSize.size()*2个元素的扁平化向量(即histSize.size()对元素)。每一对元素中的第一个和第二个元素分别指定了对应维度的下界和上界。

void cv::calcHist	
(InputArrayOfArrays 	images,const std::vector< int > & 	channels,InputArray 	mask,OutputArray 	hist,const std::vector< int > & 	histSize,const std::vector< float > & 	ranges,bool 	accumulate = false 
)		

参数3

  • 参数 images 源图像。它们都应该具有相同的深度,即CV_8U,CV_16U或CV_32F,并且具有相同的尺寸. 每个数组可以有任意数量的通道。

  • 参数 channels 计算直方图的各个维度上所选择的通道列表.第一个数组的通道编号从0开始,一直到images[0].channels()-1;第二个数组的通道编号则从images[0].channels()开始,一直到images[0].channels() + images[1].channels()-1,以此类推.
    对于第一个图像数组images[0],其通道编号从0开始,一直到该数组通道数减一。
    第二个图像数组images[1]的通道编号紧接着第一个数组的通道编号之后,从images[0].channels()开始,直到images[0].channels() + images[1].channels()-1。
    同样的规则应用于后续的图像数组,每个数组的通道编号都是紧接在前一个数组的通道编号之后。
    这样的编号方式允许在计算直方图或其他涉及跨多个图像的通道操作时,可以统一地引用所有图像的通道,而不需要单独考虑每个图像的通道编号。这在处理复杂图像分析任务时特别有用,比如计算多图像的联合直方图或特征提取等。

  • 参数 mask 可选参数掩码。如果矩阵不为空,它必须是一个与images[i]相同尺寸的8位数组。非零的掩码元素标记出了将在直方图中计数的数组元素。.

  • 参数hist 输出的直方图,使用SparseMat作为输出类型.

  • 参数histSize 在每一维度上的直方图大小的数组。

  • 参数ranges 数组ranges包含了dims个数组,每个数组表示直方图在对应维度上的bin边界。当直方图是均匀的(uniform=true),对于每个维度i,只需要指定第0个直方图bin的下界(包含) L 0 L_0 L0和最后一个binhistSize[i]-1的上界(不包含) U histSize [ i ] − 1 U_{\texttt{histSize}[i]-1} UhistSize[i]1。也就是说,在均匀直方图的情况下,ranges[i]是一个包含2个元素的数组,分别表示该维度上bin的起始和结束边界。
    然而,当直方图是非均匀的(uniform=false),ranges[i]则包含histSize[i]+1个元素: L 0 , U 0 = L 1 , U 1 = L 2 , . . . , U histSize[i] − 2 = L histSize[i] − 1 , U histSize[i] − 1 L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1} L0,U0=L1,U1=L2,...,UhistSize[i]2=LhistSize[i]1,UhistSize[i]1。这里的Lj和Uj分别表示第j个bin的下界和上界。在非均匀直方图中,数组中的元素若不在 L 0 L_0 L0 U histSize[i] − 1 U_{\texttt{histSize[i]}-1} UhistSize[i]1之间,则不会被计入直方图.

  • 参数 accumulate 累积标志。如果设置了这个标志,那么在分配直方图时,直方图不会在开始时被清零。这个特性使你能够在不同时刻从多组数组中计算单一的直方图,或者随时间更新直方图。

代码示例

#include "opencv2/core/utility.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
int _brightness = 100;
int _contrast   = 100;
Mat image;
/* brightness/contrast callback function */
static void updateBrightnessContrast( int /*arg*/, void* )
{int histSize   = 64;int brightness = _brightness - 100;int contrast   = _contrast - 100;/** The algorithm is by Werner D. Streidt* (http://visca.com/ffactory/archives/5-99/msg00021.html)*/double a, b;if ( contrast > 0 ){double delta = 127. * contrast / 100;a            = 255. / ( 255. - delta * 2 );b            = a * ( brightness - delta );}else{double delta = -128. * contrast / 100;a            = ( 256. - delta * 2 ) / 255.;b            = a * brightness + delta;}Mat dst, hist;image.convertTo( dst, CV_8U, a, b );imshow( "image", dst );calcHist( &dst, 1, 0, Mat(), hist, 1, &histSize, 0 );Mat histImage = Mat::ones( 200, 320, CV_8U ) * 255;normalize( hist, hist, 0, histImage.rows, NORM_MINMAX, CV_32F );histImage = Scalar::all( 255 );int binW  = cvRound( ( double )histImage.cols / histSize );for ( int i = 0; i < histSize; i++ )rectangle( histImage, Point( i * binW, histImage.rows ), Point( ( i + 1 ) * binW, histImage.rows - cvRound( hist.at< float >( i ) ) ), Scalar::all( 0 ), -1, 8, 0 );imshow( "histogram", histImage );
}
const char* keys = { "{help h||}{@image|baboon.jpg|input image file}" };
int main( int argc, const char** argv )
{// Load the source image. HighGUI use.image = imread( "/media/dingxin/data/study/OpenCV/sources/images/white.jpg", cv::IMREAD_GRAYSCALE );if ( image.empty() ){std::cerr << "Cannot read image file" << std::endl;return -1;}Size sz2Sh( 300, 400 );resize( image, image, sz2Sh, 0, 0, INTER_LINEAR_EXACT );namedWindow( "image", 0 );namedWindow( "histogram", 0 );createTrackbar( "brightness", "image", &_brightness, 200, updateBrightnessContrast );createTrackbar( "contrast", "image", &_contrast, 200, updateBrightnessContrast );updateBrightnessContrast( 0, 0 );waitKey();return 0;
}

运行结果

原图:
在这里插入图片描述

直方图:
在这里插入图片描述
你可以调整亮度的滑动块,或者对比度的滑动块,来观察直方图的变化,从而更好地去理解直方图的概念。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/41278.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

对MsgPack与JSON进行序列化的效率比较

序列化是将对象转换为字节流的过程&#xff0c;以便在内存或磁盘上存储。常见的序列化方法包括MsgPack和JSON。以下将详细探讨MsgPack和JSON在序列化效率方面的差异。 1. MsgPack的效率&#xff1a; 优点&#xff1a; 高压缩率&#xff1a; MsgPack采用高效的二进制编码格式&…

Embedding理解

一、概念 Embedding 可以理解为一种将概念、物体或信息转换为数字序列的数值表示方法。它是沟通两个不同世界或领域的桥梁,能够把各种类型的数据(如文本、图像、视频等)映射到一个向量空间中。 在这个向量空间里,相似的项目(例如语义上相近的单词、相似的图像或相关的视…

cs231n作业1——SVM

参考文章&#xff1a;cs231n assignment1——SVM SVM 训练阶段&#xff0c;我们的目的是为了得到合适的 &#x1d44a; 和 &#x1d44f; &#xff0c;为实现这一目的&#xff0c;我们需要引进损失函数&#xff0c;然后再通过梯度下降来训练模型。 def svm_loss_naive(W, …

【Qt】Qt概述

目录 一. 什么是Qt 二. Qt的优势 三. Qt的应用场景 四. Qt行业发展方向 一. 什么是Qt Qt是一个跨平台的C图形用户界面应用程序框架&#xff0c;为应用程序开发者提供了建立艺术级图形界面所需的所有功能。 Qt是完全面向对象的&#xff0c;很容易扩展&#xff0c;同时Qt为开发…

从打印到监测:纳米生物墨水助力3D生物打印与组织监测平台?

从打印到监测&#xff1a;纳米生物墨水助力3D生物打印与组织监测平台&#xff1f; 在 3D 组织工程中&#xff0c;纳米生物墨水是将纳米材料与 ECM 水凝胶结合&#xff0c;以提高其打印性和功能性的重要策略。纳米生物墨水可以增强水凝胶的机械性能、导电性、生物活性&#xff…

汽车报价资讯app小程序模板源码

蓝色实用的汽车报价&#xff0c;汽车新闻资讯&#xff0c;最新上市汽车资讯类小程序前端模板。包含&#xff1a;选车、资讯列表、榜单、我的主页、报价详情、资讯详情、询底价、登录、注册、车贷&#xff0c;油耗、意见反馈、关于我们等等。这是一款非常全的汽车报价小程序模板…

MNIST 数据集 ubyte 格式介绍

train-images-idx1-ubyte 文件是用于存储 MNIST 数据集中手写数字图像数据的文件。与标签文件类似&#xff0c;这个文件使用的是一种简单而紧凑的二进制格式。具体的文件格式如下&#xff1a; 文件头&#xff08;Header&#xff09;&#xff1a; 文件头部分包含了一些描述文件内…

Ubuntu 20版本安装Redis教程,以及登陆

第一步 切换到root用户&#xff0c;使用su命令&#xff0c;进行切换。 输入&#xff1a; su - 第二步 使用apt命令来搜索redis的软件包&#xff0c;输入命令&#xff1a;apt search redis 第三步 选择需要的redis版本进行安装&#xff0c;本次选择默认版本&#xff0c;redis5.…

Emacs 的优点及与 DE 的比较

一、引言 在编程领域&#xff0c;对于工具的选择一直是开发者们热议的话题。今天&#xff0c;我们来探讨一下 Emacs 及其所具有的优点&#xff0c;并思考使用 Emacs 写程序是否真的比使用集成开发环境&#xff08;IDE&#xff09;更方便。 二、Emacs 的优点 高度可定制性 可以…

mac如何安装nvm

​ vue项目开发&#xff0c;热更新&#xff0c;webpack&#xff0c;前辈造的轮子&#xff1a;各类的工具&#xff0c;库&#xff0c;像axios,qs,cookie等轮子在npm上可以拿来直接用&#xff0c;需要node作为环境支撑。 开发时同时有好几个项目&#xff0c;每个项目的需求不同…

Tornado:高性能异步Web框架详解

文章目录 引言官网链接Tornado 原理1. 非阻塞I/O2. 异步编程3. 事件循环4. 轻量级 使用方法安装Tornado创建一个简单的Web服务器 优缺点优点缺点 结论 引言 在Web开发的广阔领域中&#xff0c;处理高并发和实时性需求一直是开发者们面临的挑战。Tornado&#xff0c;作为一个由…

威纶通创建项目创建(输入,输出,画面切换使用)

创建一个项目 1&#xff0c;打开软件 2&#xff0c;创建项目&#xff0c;设置系统参数 增加设备&#xff0c;选择好对应型号&#xff08;有市面上80%设备&#xff09; 3&#xff0c;修改页面&#xff0c;选择参数 4&#xff0c;创建新页面 不能在已经编辑的页面进行新增 5&a…

【HTML入门】第三课 - 标题、段落、空格

这一小节&#xff0c;我们说一些比较零散的知识&#xff0c;HTML课程中呢&#xff0c;其实就是一些标签&#xff0c;正是这些标签组成了前端网页的各种元素&#xff0c;所以你也可以叫他们标签元素。 像前两节我们说的&#xff0c;html head body title meta style 。这些都是…

【考研】南邮历年复试上机试题目与题解

【考研】南邮历年复试上机试题目与题解 文章目录 【考研】南邮历年复试上机试题目与题解个人题目难度评估历年上机题目PROB1002 求最值问题PROB1003 新对称素数问题PROB1004 进制转换PROB1005 涂色问题 (待补)PROB1006 最大公约数和最小公倍数PROB1007 斐波那契数列PROB1008 回…

解决Spring Boot中的数据库连接池问题

解决Spring Boot中的数据库连接池问题 大家好&#xff0c;我是微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 1. 理解数据库连接池的重要性 数据库连接池在任何使用数据库的应用程序中都起着至关重要的作用。它们管理和维…

解析Java中的动态代理与静态代理的区别

解析Java中的动态代理与静态代理的区别 大家好&#xff0c;我是微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 1. 引言 代理模式是软件开发中常用的一种设计模式&#xff0c;用于控制对其它对象的访问。在Java中&#xf…

C#中的Task.Delay(2000).Wait() 与await Task.Delay(2000)

Task.Delay(2000).Wait() 和 await Task.Delay(2000) 在功能上看似相似&#xff0c;都用于等待一段时间&#xff08;在这个例子中是2000毫秒&#xff09;&#xff0c;但它们在使用方式和背后的行为上存在一些关键差异。 .Result 是 Task 类的一个属性&#xff0c;它用于获取任务…

算法刷题笔记 滑动窗口(C++实现,非常详细)

文章目录 题目描述基本思路实现代码 题目描述 给定一个大小为n ≤ 10^6的数组。有一个大小为k的滑动窗口&#xff0c;它从数组的最左边移动到最右边。你只能在窗口中看到k个数字。每次滑动窗口向右移动一个位置。以下是一个例子&#xff1a; 该数组为 [1 3 -1 -3 5 3 6 7]&…

用HttpURLConnection复现http响应码405

目录 使用GET方法&#xff0c;访问GET接口&#xff0c;服务端返回405使用GET方法&#xff0c;访问POST接口&#xff0c;服务端返回405使用POST方法&#xff0c;访问GET接口&#xff0c;服务端返回405 使用GET方法&#xff0c;访问GET接口&#xff0c;服务端返回405 发生场景&a…

Linux shell编程学习笔记63:free命令 获取内存使用信息

0 前言 在系统安全检查中&#xff0c;内存使用情况也是一块可以关注的内容。Linux提供了多个获取内存信息的命令很多。今天我们先研究free命令。 1 free命令的功能、用法和选项说明 1.1 free命令的功能 free 命令可以显示系统内存的使用情况&#xff0c;包括物理内存、交换…