银行信用卡风险大数据分析与挖掘2024

银行信用卡风险大数据分析与挖掘

使用excel数据挖掘功能完成

一、信用卡客户信用等级影响因素分析与挖掘

基于客户信用记录表

1. 数据预处理

浏览数据
  • 客户等级占比,其中优质客户占比较少,风险客户很多,分析影响客户信用等级的原因

    在这里插入图片描述

  • 年龄分布,为了方便挖掘,后续会重新标记为30岁以下,30-50,50岁以上

    在这里插入图片描述

  • 婚姻状态,有一个离散值

    在这里插入图片描述

  • 户籍分布,分为特别发达、一般和偏远

    在这里插入图片描述

  • 教育程度,后续会重新标记为是否上过大学

    在这里插入图片描述

  • 住房类型,其他影响挖掘,后续会当作离散值删除

    在这里插入图片描述

  • 职业类别

    在这里插入图片描述

  • 工作年限,将20年以上的标记为一类

在这里插入图片描述

  • 个人收入 收入差距太大了

在这里插入图片描述

可以看到部分人的收入过高,部分人过低

在这里插入图片描述

在这里插入图片描述

  • 保险缴纳

在这里插入图片描述

  • 车辆情况

    在这里插入图片描述

  • 信用评分

    在这里插入图片描述

  • 额度

在这里插入图片描述

  • 审批结果

在这里插入图片描述

离群值清除
  • 婚姻状态,选择将一个丧偶人士的数据清除

    在这里插入图片描述

在这里插入图片描述

  • 住房类型

    在这里插入图片描述

在这里插入图片描述

重新标记
  • 年龄 重新标记为低于30、30-50、大于50

    在这里插入图片描述在这里插入图片描述

  • 户籍

    在这里插入图片描述

  • 教育程度

    在这里插入图片描述

  • 工作年限

    在这里插入图片描述

采用突出显示异常值处理

异常值报表

在这里插入图片描述

异常值数据,共36条

在这里插入图片描述

选择删除异常值

数据处理结果

在这里插入图片描述

2. 数据挖掘

采用分类中决策树构建模型,判断信用卡客户信用等级影响因素,这里没有选择收入,是因为收入是连续值,所以我们判断的是除收入外最重要的影响因素

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

生成结果

在这里插入图片描述

3. 挖掘结论分析与建议

决策树:

在这里插入图片描述

分析及建议:

该模型用于预测客户的风险等级(A、B、C或D),基于几个关键特征:居住类型(自购房或租房)、年龄和教育程度。

从这个决策树中可以得出以下几点:

  • 对于居住类型为“自购”的客户:
    • 如果年龄小于30岁且教育程度为本科及以上,则风险等级为A的概率较高。
    • 如果年龄大于等于30岁且教育程度为本科及以上,则风险等级为B的概率较高。
    • 如果年龄大于等于30岁且教育程度为本科及以下,则风险等级为C的概率较高。
  • 对于居住类型为“租”的客户:
    • 如果年龄小于30岁且教育程度为本科及以下,则风险等级为C的概率较高。
    • 如果年龄大于等于30岁且教育程度为本科及以下,则风险等级为D的概率较高。
    • 如果年龄大于等于30岁且教育程度为本科及以上,则风险等级为C的概率较高。

基于这些信息,给出建议如下:

  1. 针对居住类型为“自购”的年轻高学历客户(年龄小于30岁且教育程度为本科及以上),他们可能具有较低的风险等级(A或B)。因此,对于这类客户,可以考虑提供更优惠的产品和服务,以吸引并保留他们。

  2. 相反地,针对居住类型为“租”且年龄较大、教育程度较低的客户(年龄大于等于30岁且教育程度为本科及以下),他们可能具有较高的风险等级(C或D)。因此,在与这类客户打交道时要更加谨慎,并采取相应的风险管理措施。

  3. 对于居住类型为“租”的年轻低学历客户(年龄小于30岁且教育程度为本科及以下),他们的风险等级也相对较高(C)。因此,需要对他们进行更多的关注和管理,以便及时发现潜在问题并采取相应措施。

依赖关系网络

在这里插入图片描述

在这里插入图片描述

图中可以看出,最强连接是居住类型,也就是客户是否有房

说明:以上分析均不考虑连续收入,因为连续数据实在不好重新标注,可以把它当成单独的重要因素进行挖掘

二、欺诈人口属性分析与挖掘(同样为不考虑收入因素)

基于消费历史记录表

1. 数据预处理

在这里插入图片描述

1.1 分析关键影响因素

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

根据表格中的数据,我们可以得到以下结论:

  1. 日均消费金额:当日均消费金额在7到12次之间时,欺诈的可能性更高(红色);而在5到7次之间时,欺诈的可能性较低(绿色)。
  2. 卡类别的影响:白金卡和金卡的欺诈可能性较低(绿色),而普卡的欺诈可能性较高(红色)。
  3. 客户号的影响:某些特定的客户号(999993847675和999993864022)有较高的欺诈可能性(红色)。
  4. 额度的影响:额度为100000的信用卡存在较高的欺诈可能性(红色)。

综上所述,银行或其他金融机构可以根据这些信息调整其风险管理策略。例如,对于日均交易次数较多、持有普卡、拥有特定客户号以及信用额度较大的账户,应加强监控和审核,以降低欺诈风险。同时,也可以通过提高安全措施、实施更严格的审批流程等方式来防范欺诈行为。

1.2 类别检测

在这里插入图片描述在这里插入图片描述

  • 类别1的用户主要进行小额交易,无论是单笔最小还是最大金额都很低。
  • 用户的日均交易次数处于中等水平,表明他们是频繁但非过度使用者。
  • 使用的卡片多为普通卡,可能意味着这些用户尚未达到升级卡级别的资格或需求。
  • 所有记录都没有欺诈行为,这可能是因为这一类别的用户交易模式较为常规,不容易被标记为欺诈。

1.3 突出显示异常值

在这里插入图片描述

选择删除异常值

2. 数据挖掘

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

决策树

在这里插入图片描述在这里插入图片描述

在这里插入图片描述

分析建议

通过这个决策树模型,我们可以看出日均交易次数和额度对欺诈行为的影响。具体来说,当日均交易次数较高(大于等于4次且小于6次),并且额度不是固定值10000元时,欺诈的可能性会增加。因此,银行或其他金融机构可以通过监控这类账户来提高风险预警能力,并采取相应的预防措施,如加强审核或设置更高的安全阈值。

此外,该模型也可以帮助我们了解欺诈行为发生的概率随日均交易次数和额度变化的趋势。例如,在日均交易次数较低(小于4次)或额度固定为10000元时,欺诈行为的概率较小。这有助于优化风控策略,比如设定不同的风险评估标准以适应不同的用户行为模式。

聚类

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

通过这个图形,我们可以看到不同分类之间的差异。例如,分类1的用户似乎是最活跃的,他们不仅有最高的日均交易次数和日均消费金额,而且单笔消费的最大金额也最高。另一方面,分类3的用户额度最低,日均交易次数最少,且单笔消费的最大金额也最低。这可能表明分类1的用户是高价值客户,而分类3的用户可能是新用户或低活跃度用户。

在这里插入图片描述

在这里插入图片描述

分析与建议

要深入分析这些数据,我们需要知道每个分类的具体含义,例如,它们可能代表不同的用户群体,如新老用户、活跃度高低、信用评分等级等。有了这些额外信息,我们可以构建更精确的用户画像,从而制定更好的市场营销策略或风险管理政策。例如,对于分类1的用户,银行可能希望提供更多高端服务或优惠,而对于分类3的用户,则可能需要关注如何提升他们的活跃度和消费额。

一共聚类9个,关于其他类别的分析在这里不再详述。

三、excel数据挖掘总结

文章主要完成了两项重要任务:一是分析信用卡客户的信用等级影响因素,二是挖掘信用卡欺诈的人口属性特征。以下是具体总结:

首先,在信用等级影响因素分析方面,文章使用Excel数据挖掘功能处理了客户信用记录表,通过预处理数据、构建决策树模型和分析模型结果,得出了客户信用等级的主要影响因素。预处理阶段包括数据清理、变量转换和异常值处理。模型分析中,居住类型、年龄和教育程度被识别为决定客户信用等级的关键特征。例如,居住类型为自购房的年轻且受过高等教育的客户(年龄小于30岁,本科及以上)具有较低的风险等级(A或B)。相反,租房的、年龄较大且教育程度较低的客户(年龄30岁以上,本科以下)风险等级较高(C或D)。因此,文章建议银行为自购房的年轻高学历客户提供更优惠的服务,同时对租房的老年低学历客户采取更谨慎的风险管理策略。

其次,关于信用卡欺诈的人口属性分析,文章基于消费历史记录表进行了数据预处理和决策树建模。分析结果显示,日均消费金额、卡类别、特定客户号和额度是欺诈行为的关键影响因素。日均消费金额在7到12次之间欺诈可能性更高,普卡的欺诈可能性比白金卡和金卡高,特定客户号和大额度信用卡存在较高的欺诈风险。进一步的类别检测发现,类别1的用户主要进行小额交易,使用普通卡,没有欺诈行为。决策树模型揭示了欺诈行为与日均交易次数和额度的关系,指出日均交易次数高于4次且额度不固定为1万元时欺诈可能性增大。银行据此可以优化风控策略,对交易频繁、持有普通卡、特定客户号和大额度的账户加强监控。

在整个过程中,文章应用了数据预处理、异常值处理、决策树模型构建和分析、以及聚类分析等数据分析技术。通过对数据进行深入挖掘,银行能够优化信用卡风险管理和欺诈防控策略,提高风险预警能力和客户服务水平。文章强调了居住类型、年龄、教育程度、日均消费金额和额度对信用卡风险和欺诈行为的影响,为银行提供了一套实用的分析框架和策略建议。

测发现,类别1的用户主要进行小额交易,使用普通卡,没有欺诈行为。决策树模型揭示了欺诈行为与日均交易次数和额度的关系,指出日均交易次数高于4次且额度不固定为1万元时欺诈可能性增大。银行据此可以优化风控策略,对交易频繁、持有普通卡、特定客户号和大额度的账户加强监控。

在整个过程中,文章应用了数据预处理、异常值处理、决策树模型构建和分析、以及聚类分析等数据分析技术。通过对数据进行深入挖掘,银行能够优化信用卡风险管理和欺诈防控策略,提高风险预警能力和客户服务水平。文章强调了居住类型、年龄、教育程度、日均消费金额和额度对信用卡风险和欺诈行为的影响,为银行提供了一套实用的分析框架和策略建议。


至此,该项目完成,使用到数据源4个表中的两个;涉及到的数据集与挖掘报告pdf版本均已上传资源,资源名与本文标题一致,如果觉得图片不清晰,可以下载资源查看pdf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/40924.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3+ts项目中.env配置环境变量与情景配置

一、环境变量配置 官网https://cn.vitejs.dev/guide/env-and-mode.html#intellisense 1. 新建.env开头的文件在根目录 为了防止意外地将一些环境变量泄漏到客户端,只有以 VITE_ 为前缀的变量才会暴露给经过 vite 处理的代码 .env 所有环境默认加载 .env.developm…

数字化精益生产系统--MRP 需求管理系统

MRP(Material Requirements Planning,物料需求计划)需求管理系统是一种在制造业中广泛应用的计划工具,旨在通过分析和计划企业生产和库存需求,优化资源利用,提高生产效率。以下是对MRP需求管理系统的功能设…

Raylib 坐标系

draftx 符号调整为正数 发现采样坐标系原点0&#xff0c;0 在左上角&#xff0c;正方向 右&#xff0c;下 绘制坐标系 原点0&#xff0c;0 在左下角&#xff0c;正方向 右&#xff0c;上 拖拽可得 #include <raylib.h> // 重整原因&#xff1a;解决新函数放大缩小之下…

当需要对多个表进行联合更新操作时,怎样确保数据的一致性?

文章目录 一、问题分析二、解决方案三、示例代码&#xff08;以 MySQL 为例&#xff09;四、加锁机制示例五、测试和验证六、总结 在数据库管理中&#xff0c;经常会遇到需要对多个表进行联合更新的情况。这种操作带来了一定的复杂性&#xff0c;因为要确保在整个更新过程中数据…

为什么需要服务器?服务器可以做些什么

目录 一、服务器和电脑的区别二、什么是SSH三、什么是免密码登录四、服务器如何实现SSH免密码登录 一、服务器和电脑的区别 服务器和电脑是两种不同类型的计算机系统&#xff0c;它们在设计、功能和用途上存在明显的区别。首先&#xff0c;从硬件配置上看&#xff0c;服务器通…

vb.netcad二开自学笔记3:启动与销毁

Imports Autodesk.AutoCAD.ApplicationServicesImports Autodesk.AutoCAD.EditorInputImports Autodesk.AutoCAD.RuntimePublic Class WellcomCADImplements IExtensionApplicationPublic Sub Initialize() Implements IExtensionApplication.InitializeMsgBox("net程序已…

JDK都出到20多了,你还不会使用JDK8的Stream流写代码吗?

目录 前言 Stream流 是什么&#xff1f; 为什么要用Steam流 常见stream流使用案例 映射 map() & 集合 collect() 单字段映射 多字段映射 映射为其他的对象 映射为 Map 去重 distinct() 过滤 filter() Stream流的其他方法 使用Stream流的弊端 前言 当你某天看…

基于深度学习LightWeight的人体姿态检测跌倒系统源码

一. LightWeight概述 light weight openpose是openpose的简化版本&#xff0c;使用了openpose的大体流程。 Light weight openpose和openpose的区别是&#xff1a; a 前者使用的是Mobilenet V1&#xff08;到conv5_5&#xff09;&#xff0c;后者使用的是Vgg19&#xff08;前10…

公务员考试、事业编考试、教师资格证、面试、K12资料、电子书

点击上方△腾阳 关注 作者 l 腾阳 转载请联系授权 你好&#xff0c;我是腾阳。 在这个自媒体的海洋里&#xff0c;我曾是一只迷失方向的小鸟&#xff0c;多次尝试飞翔却总是跌跌撞撞。 但每一次跌倒&#xff0c;都让我更坚定地相信&#xff0c;只要不放弃&#xff0c;总…

【Unity2D 2022:Particle System】添加命中粒子特效

一、创建粒子特效游戏物体 二、修改粒子系统属性 1. 基础属性 &#xff08;1&#xff09;修改发射粒子持续时间&#xff08;Duration&#xff09;为1s &#xff08;2&#xff09;取消勾选循环&#xff08;Looping&#xff09; &#xff08;2&#xff09;修改粒子存在时间&…

2024全网最全面及最新且最为详细的网络安全技巧五 之 SSRF 漏洞EXP技巧,典例分析以及 如何修复 (上册)———— 作者:LJS

五——SSRF漏洞 EXP技巧&#xff0c;典例分析以及 如何修复 目录 五——SSRF EXP技巧&#xff0c;典例分析以及 如何修复 5.1Apache mod_proxy SSRF&#xff08;CVE-2021-40438&#xff09;的一点分析和延伸 0x01 Apache Module综述 0x02 漏洞原理分析 Apache在配置反代的后端…

Java实现登录验证 -- JWT令牌实现

目录 1.实现登录验证的引出原因 2.JWT令牌2.1 使用JWT令牌时2.2 令牌的组成 3. JWT令牌&#xff08;token&#xff09;生成和校验3.1 引入JWT令牌的依赖3.2 使用Jar包中提供的API来实现JWT令牌的生成和校验3.3 使用JWT令牌验证登录3.4 令牌的优缺点 1.实现登录验证的引出 传统…

Debezium报错处理系列之第110篇: ERROR Error during binlog processing.Access denied

Debezium报错处理系列之第110篇:ERROR Error during binlog processing. Last offset stored = null, binlog reader near position = /4 Access denied; you need at least one of the REPLICATION SLAVE privilege for this operation 一、完整报错二、错误原因三、解决方法…

微服务: Nacos部署安装与properties配置

Nacos 是阿里巴巴开源的一款用于动态服务发现、配置管理和服务管理的基础设施。Nacos 这个名称源自于 “Dynamic Naming and Configuration Service”。它主要是用于解决微服务架构中服务发现和配置管理的问题。 Nacos 单机模式的部署安装 1. 安装(Windows环境) Nacos是Java…

从入门到深入,Docker新手学习教程

编译整理&#xff5c;TesterHome社区 作者&#xff5c;Ishaan Gupta 以下为作者观点&#xff1a; Docker 彻底改变了我们开发、交付和运行应用程序的方式。它使开发人员能够将应用程序打包到容器中 - 标准化的可执行组件&#xff0c;将应用程序源代码与在任何环境中运行该代码…

InspireFace-商用级的跨平台开源人脸分析SDK

InspireFace-商用级的跨平台开源人脸分析SDK InspireFaceSDK是由insightface开发的⼀款⼈脸识别软件开发⼯具包&#xff08;SDK&#xff09;。它提供了⼀系列功能&#xff0c;可以满⾜各种应⽤场景下的⼈脸识别需求&#xff0c;包括但不限于闸机、⼈脸⻔禁、⼈脸验证等。 该S…

ubuntu22 sshd设置

专栏总目录 一、安装sshd服务 sudo apt updatesudo apt install -y openssh-server 二、配置sshd 使用文本编辑器打开/etc/ssh/sshd_config sudo vi /etc/ssh/sshd_config &#xff08;一&#xff09;配置sshd服务的侦听端口 建议将ssh的侦听端口改为7000以上的端口&#…

【bazel】快速下载教程

bazel下载链接&#xff1a; https://github.com/bazelbuild/bazel/releases?page11 直接在github上下载&#xff0c;会因为网络不稳定&#xff0c;而频繁下载错误 这里提供一个超级快速的方法&#xff01;&#xff01;&#xff01; 用迅雷下载&#xff01; 1.从github上复…

【力扣 - 每日一题】3115. 质数的最大距离(一次遍历、头尾遍历、空间换时间、埃式筛、欧拉筛、打表)Golang实现

原题链接 题目描述 给你一个整数数组 nums。 返回两个&#xff08;不一定不同的&#xff09;质数在 nums 中 下标 的 最大距离。 示例 1&#xff1a; 输入&#xff1a; nums [4,2,9,5,3] 输出&#xff1a; 3 解释&#xff1a; nums[1]、nums[3] 和 nums[4] 是质数。因此答…

算法系列--分治排序|再谈快速排序|快速排序的优化|快速选择算法

前言:本文就前期学习快速排序算法的一些疑惑点进行详细解答,并且给出基础快速排序算法的优化版本 一.再谈快速排序 快速排序算法的核心是分治思想,分治策略分为以下三步: 分解:将原问题分解为若干相似,规模较小的子问题解决:如果子问题规模较小,直接解决;否则递归解决子问题合…