【YOLOv5/v7改进系列】替换损失函数为WIOU、CIOU、GIOU、SIOU、DIOU、EIOU、Focal C/G/S/D/EIOU等

一、导言

在目标检测任务中,损失函数的主要作用是衡量模型预测的边界框(bounding boxes)与真实边界框之间的匹配程度,并指导模型学习如何更精确地定位和分类目标。损失函数通常由两部分构成:分类损失(用于判断物体属于哪个类别)和回归损失(用于调整预测边界框的位置和尺寸以更好地匹配真实目标)。一个好的损失函数能够帮助模型快速且准确地收敛,提高检测性能。

二、YOLO训练中常见且有效的损失函数
1.SIOU (Sum of Intersection over Union)

SIOU不是一个广泛认可的术语,但若假设这是对某种综合IoU概念的提及,其潜在的优点可能在于尝试结合不同IoU变体的优势,比如同时考虑重叠区域、最小外包矩形、中心点距离等,以提供一个更全面的评估标准,可能在某些特定场景下提升检测精度。

2.EIOU (Enhanced Intersection over Union)

EIOU是对IOU的一个增强版本,旨在进一步提升回归损失的效果。它可能通过额外考虑边界框尺寸、形状或位置关系的度量,以更精细地引导边界框的调整。EIOU的优点在于它能更有效地处理极端情况,如极度倾斜或部分重叠的目标,从而提高检测的鲁棒性和准确性。

3.DIOU (Distance Intersection over Union)

DIOU在传统IOU的基础上,加入了两个边界框中心点之间的欧几里得距离,这有助于直接最小化预测框与真实框之间的距离,加快了收敛速度并改善了对密集对象和极端长宽比目标的检测效果。其优点包括减少重叠区域之外的定位误差,尤其在处理重叠少或无重叠情况时更为有效。

4.GIOU (Generalized Intersection over Union)

GIOU解决了IOU无法惩罚预测框未能完全覆盖真实框的问题,通过计算预测框与真实框的最小外包矩形与它们交集的比值,促使预测框不仅尽可能重叠,而且形状和大小也要更加接近真实框。GIOU的优点在于能有效引导框的扩展,尤其是在目标被严重遮挡或仅部分可见时,提升检测的完整性。

5.CIOU (Complete Intersection over Union)

CIOU在GIOU的基础上,进一步加入了边界框中心点距离的惩罚项以及对宽高比的约束,形成了一个更为全面的损失函数。它不仅优化了重叠区域的测量,还解决了边界框尺寸不一致的问题,从而在各种复杂场景下都能提供稳定的性能提升。CIOU的优点在于它是目前较为全面的回归损失函数,能够综合考虑重叠、中心点距离和宽高比,提高了检测的准确性和效率。

这些改进的IoU损失函数都是为了克服传统IOU作为损失函数时存在的局限性,如只关注重叠区域而不考虑位置偏差或形状不匹配的问题,通过不断地优化,这些新提出的损失函数使得目标检测系统的性能得到了显著提升。

三、YOLOv7-tiny改进工作

了解二后,打开YOLOv7项目文件下的utils文件夹下的general.py,搜索def bbox_iou定位到如下行,

替换如下代码为

class WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False  # (false为v3,true为v2,none为v1)_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False,Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter / (union + eps), alpha)  # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter / (union + eps),gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps),gamma)  # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)  # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter / (union + eps), gamma)  # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha)  # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou  # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2))  # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps),gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter / (union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

打开utils文件夹下的loss.py,搜索class ComputeLossOTA定位到如下行:

替换ComputeLossOTA下的该两行为如下代码

                iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, WIoU=True, scale=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, GIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, SIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, DIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, EIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True, Focal=True)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, SIoU=True, Focal=True)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, DIoU=True, Focal=True)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, EIoU=True, Focal=True)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, GIoU=True, Focal=True)if type(iou) is tuple:if len(iou) == 2:lbox += (iou[1].detach() * (1 - iou[0])).mean()iou = iou[0]else:lbox += (iou[0] * iou[1]).mean()iou = iou[-1]else:lbox += (1.0 - iou).mean()  # iou loss

使用时,取消掉不要的注释即可(如base是CIOU,你想使用SIOU,注释掉CIOU这行,SIOU那行取消注释即可)。

四、YOLOv7改进工作

 了解二后,打开YOLOv7项目文件下的utils文件夹下的general.py,搜索def bbox_iou定位到如下行,

替换如下代码为

class WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False  # (false为v3,true为v2,none为v1)_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False,Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter / (union + eps), alpha)  # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter / (union + eps),gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps),gamma)  # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)  # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter / (union + eps), gamma)  # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha)  # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou  # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2))  # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps),gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter / (union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

打开utils文件夹下的loss.py,搜索class ComputeLoss:定位到如下行:

 

替换该两行为如下代码

                iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, WIoU=True, scale=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, GIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, SIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, DIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, EIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, SIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, DIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, EIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, GIoU=True, Focal=True)if type(iou) is tuple:if len(iou) == 2:lbox += (iou[1].detach() * (1 - iou[0])).mean()iou = iou[0]else:lbox += (iou[0] * iou[1]).mean()iou = iou[-1]else:lbox += (1.0 - iou).mean()  # iou loss

使用时,取消掉不要的注释即可(如base是CIOU,你想使用SIOU,注释掉CIOU这行,SIOU那行取消注释即可)。

五、YOLOv5改进工作

了解二后,打开YOLOv5项目文件下的utils文件夹下的metrics.py,搜索def bbox_iou定位到如下行,

将该函数替换为如下代码

class WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False  # (false为v3,true为v2,none为v1)_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False,Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter / (union + eps), alpha)  # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter / (union + eps),gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps),gamma)  # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)  # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter / (union + eps), gamma)  # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha)  # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou  # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2))  # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps),gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter / (union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

打开utils文件夹下的loss.py,搜索ciou

替换该两行为

                iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, WIoU=True, scale=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, GIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, SIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, DIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, EIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, SIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, DIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, EIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, GIoU=True, Focal=True)if type(iou) is tuple:if len(iou) == 2:lbox += (iou[1].detach() * (1 - iou[0])).mean()iou = iou[0]else:lbox += (iou[0] * iou[1]).mean()iou = iou[-1]else:lbox += (1.0 - iou).mean()  # iou loss

使用时,取消掉不要的注释即可(如base是CIOU,你想使用SIOU,注释掉CIOU这行,SIOU那行取消注释即可)。

六、一些注意的点

采用WIOU进行训练时,默认采用的是WIOUv3

想要训练WIOUv1、v2时将该行改为none、true即可。

更多文章产出中,主打简洁和准确,欢迎关注我,共同探讨!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/39605.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RabbitMQ入门教程(精细版二带图)

目录 六 RabbitMQ工作模式 6.1Hello World简单模式 6.1.1 什么是简单模式 6.1.2 RabbitMQ管理界面操作 6.1.3 生产者代码 6.1.4 消费者代码 6.2 Work queues工作队列模式 6.2.1 什么是工作队列模式 6.2.2 RabbitMQ管理界面操作 6.2.3 生产者代码 6.2.4 消费者代码 …

清理测试数据用truncate还是delete

truncate和delete的区别,我相信大家都清楚。 truncate会清空表的全部数据,且自增主键会重置;而delete可以按条件删除,且自增主键不会重置。 我们日常测试过程中经常要删除掉测试数据,那么应该用truncate删&#xff0c…

Java中继承接口和实现接口的区别、接口和抽象类的区别、并理解关键字interface、implements

初学者容易把继承接口和实现接口搞混,专门整理一下,顺便简单介绍一下interface、implements关键字。 继承接口和实现接口的区别、接口的特点 继承接口是说的只有接口才可以继承接口,是接口与接口间的。实现接口是说的接口与类之间&#xff…

Eclipse导入工程提示“No projects are found to import”

如果发现导入工程的时候出现"No projects are found to import" 的提示,首先查看项目目录中是否有隐藏文件.project,还有目录结构也还要有一个隐藏文件.classpath, 如果没有的解决办法。 方法1:可以把其它项目的.proje…

面试题--SpirngCloud

SpringCloud 有哪些核心组件?(必会)  Eureka: 注册中心, 服务注册和发现  Ribbon: 负载均衡, 实现服务调用的负载均衡  Hystrix: 熔断器  Feign: 远程调用  Zuul: 网关  Spring Cloud Config: 配置中心 (1)Eureka 提供服务注册和发现, 是注册中心. 有两个组…

【最新】App Inventor 2 学习平台和AI2伴侣使用

1、AppInventor2服务器: 官方服务器:http://ai2.appinventor.edu/ 官方备用服务器:http://code.appinventor.mit.edu/ 国内同步更新服务器:https://www.fun123.cn 国内访问速度很快,很稳定,文档是中文的…

Android11 系统/framework层禁止三方应用开机自启动。

背景介绍:客户给了定制的launcher,要求在设备上启动他们的launcher,实现过程中出现的问题是 开机引导还没走完,launcher就会自己弹出来打断开机引导,按道理来说launcher是在开机引导结束后,由开机引导通过i…

偏微分方程笔记(驻定与非驻定问题)

椭圆方程可以看成抛物方程 t → ∞ t\rightarrow\infty t→∞的情况。 抛物: 双曲:

什么是deep supervision?

Deep supervision 是深度学习中的一种技术,通常用于改进模型训练的效果,尤其是在训练深度神经网络时。它通过在模型的多个中间层添加辅助监督信号(即额外的损失函数)来实现。这种方法有助于缓解梯度消失问题,加速收敛&…

DolphinDB 蝉联 Gartner 中国实时数据管理代表厂商

报!DolphinDB 又上榜啦!!! 上月,全球知名信息技术研究公司 Gartner 发布了 Hype Cycle for Data, Analytics and AI in China, 2024 报告,以技术成熟度曲线(Hype Cycle)和优先级矩阵…

【NLP学习笔记】load_dataset加载数据

除了常见的load_dataset(<hf上的dataset名>)这种方式加载HF上的所有数据外&#xff0c;还有其他custom的选项。 加载HF上部分数据 from datasets import load_dataset c4_subset load_dataset("allenai/c4", data_files"en/c4-train.0000*-of-01024.js…

Spring Boot集成多数据源的最佳实践

Spring Boot集成多数据源的最佳实践 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 为什么需要多数据源&#xff1f; 在实际的应用开发中&#xff0c;有时候…

【C++ Primer Plus学习记录】函数和C-风格字符串

将字符串作为参数时意味着传递的是地址&#xff0c;但可以使用const来禁止对字符串参数进行修改。 假设要将字符串作为参数传递给函数&#xff0c;则表示字符串的方式有三种&#xff1a; &#xff08;1&#xff09;char数组 &#xff08;2&#xff09;用引号括起来的字符串常…

航空数据管控系统-②项目分析与设计:任务1:需求分析-项目场景引入

任务描述 知识点&#xff1a;需求分析 重 点&#xff1a;原型设计工具&#xff0c;用例图&#xff0c;流程图绘制工具 难 点&#xff1a;功能点的梳理 内 容&#xff1a;完成本次实训项目的需求分析 先共同讨论处本项目的主要功能模块&#xff0c;并确定每个模块的负责…

通过卷防水上限,解锁手机的新玩法?IP68之间亦有不同

当手机的日常防水已经成了基本功&#xff0c;防水能力的上限便成了新的赛道。 毕竟再谨慎的人&#xff0c;也可能会有手滑的时候。这个时候&#xff0c;一台有着IP68级防水的手机&#xff0c;就能给你提供一份安心。 【IP68是标准上限&#xff0c;不是手机防水上限】 IP68是…

JAVA学习笔记2

一、加号使用 二、数据类型 bit&#xff1a;计算机中的最小存储单位 byte(字节):计算机中基本存储单元&#xff0c;1byte8bit 浮点数符号位指数位尾数位 浮点数默认为double类型

2024亚太杯中文赛B题全保姆教程

B题 洪水灾害的数据分析与预测 问题 1. 请分析附件 train.csv 中的数据&#xff0c;分析并可视化上述 20 个指标中&#xff0c;哪 些指标与洪水的发生有着密切的关联&#xff1f;哪些指标与洪水发生的相关性不大&#xff1f;并 分析可能的原因&#xff0c;然后针对洪水的提前预…

Teamviewer删除可信任设备

目前基本上主流的远程连接软件都有限制&#xff0c;要么收费&#xff1b; Teamviewer可信任设备有限&#xff0c;超出限制就会提示错误&#xff0c;需要删除多余的设备才能登陆账号&#xff01; 需要登陆这个网站 Teamviewer Management console&#xff0c;才能修改&#xff…

基于 STM32 的智能睡眠呼吸监测系统设计

本设计的硬件构成&#xff1a; STM32F103C8T6单片机最小系统板&#xff08;包含3.3V稳压电路时钟晶振电路复位电路&#xff08;上电自复位&#xff0c;手动复位&#xff09;&#xff09;&#xff0c;心率传感器、气压传感器、液晶显示、按键、蜂鸣器、LED灯、蓝牙模块组合而成…

【C++/STL深度剖析】priority_queue 最全解析(什么是priority_queue? priority_queue的常用接口有哪些?)

目录 一、前言 二、如何区分【优先级队列】与【队列】&#xff1f; 三、priority_queue的介绍 四、priority_queue 的构造 五、priority_queue 的常用接口 &#x1f4a7;push &#x1f4a7;pop &#x1f4a7;size &#x1f4a7;top &#x1f4a7;empty &…