YOLOv5改进 | 损失函数 | EIoU、SIoU、WIoU、DIoU、FocuSIoU等多种损失函数

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转   


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录: 《YOLOv5入门 + 改进涨点》专栏介绍 & 专栏目录 |目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进


在目标检测领域内,尽管YOLO系列的算法傲视群雄,但在某些方面仍然存在改进的空间。在YOLOv5的损失函数中,默认是使用的CIoU,但是CIoU仍然存在一定的问题。例如CIOU的计算方式相对复杂需要对边界框的坐标进行更多的处理和计算。本文给大家带来的教程是将原来的CIoU替换为EIoU、SIoU、WIoU、DIoU、FocusIoU。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

 专栏地址YOLOv5改进+入门——持续更新各种有效涨点方法——点击即可跳转

目录

1. ✒️CIoU

1.1 CIoU原理

1.2 CIoU计算

1.3 📌CIoU代码实现

2. ✒️WIOU(Efficient-IoU)

2.1 WIoU原理

2.2 代码实现 

3. 将EIoU、SIoU、WIoU、DIoU、FocusIoU添加到YOLOv5中

3.1 添加代码

3.2 回调函数

4.完整代码分享

5. 进阶

6. 总结


1. ✒️CIoU

1.1 CIoU原理

img

论文地址:Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression——点击即可跳转

论⽂考虑到bbox回归三要素中的⻓宽⽐还没被考虑到计算中,为此,进⼀步在DIoU的基础上提出了CIoU,同时考虑两个矩形的长宽比,也就是形状的相似性。所以CIOU在DIOU的基础上添加了长宽比的惩罚项。

其中, 是权重函数, 而用来度量长宽比的相似性。计算公式为:

☀️优点

更准确的相似性度量:CIOU考虑了边界框的中心点距离和对角线距离,因此可以更准确地衡量两个边界框之间的相似性,尤其是在目标形状和大小不规则的情况下。 鲁棒性更强:相比传统的IoU,CIOU对于目标形状和大小的变化更具有鲁棒性,能够更好地适应各种尺寸和形状的目标检测任务。

⚡️缺点

计算复杂度增加:CIOU引入了额外的中心点距离和对角线距离的计算,因此相比传统的IoU,计算复杂度有所增加,可能会增加一定的计算成本。 实现难度较高:CIOU的计算方式相对复杂,需要对边界框的坐标进行更多的处理和计算,因此在实现上可能会相对困难一些,需要更多的技术和经验支持。

1.2 CIoU计算

中心点 b、中心点 bgt的坐标分别为:(3,4)、(6,6),由此CIoU计算公式如下:

1.3 📌CIoU代码实现

import numpy as np
import IoU
import DIoU
# box : [左上角x坐标,左上角y坐标,右下角x坐标,右下角y坐标]
box1 = [0, 0, 6, 8]
box2 = [3, 2, 9, 10]
# CIoU
def CIoU(box1, box2):x1, y1, x2, y2 = box1x3, y3, x4, y4 = box2# box1的宽:box1_w,box1的高:box1_h,box1_w = x2 - x1box1_h = y2 - y1# box2的宽:box2_w,box2的高:box2_h,box2_w = x4 - x3box2_h = y4 - y3iou = IoU(box1, box2)diou = DIoU(box1, box2)# v用来度量长宽比的相似性v = (4 / (np.pi) ** 2) * (np.arctan(int(box2_w / box2_h)) - np.arctan(int(box1_w / box1_h)))# α是权重函数a = v / ((1 + iou) + v)ciou = diou - a * vreturn ciouprint(CIoU(box1, box2))

2. ✒️WIOU(Efficient-IoU)

2.1 WIoU原理

WIoU的主要原理

论文地址: Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism

WIoU(Wise-IoU)是为了改进边界框回归(Bounding Box Regression, BBR)损失而提出的一种新的损失函数。WIoU引入了一种动态的非单调聚焦机制(Focusing Mechanism, FM),用于解决高质量和低质量样本对模型训练的不利影响。其主要原理如下:

  1. 动态非单调聚焦机制

    • WIoU使用非单调聚焦机制,通过评估anchor box(锚框)的离群度(outlier degree)来衡量其质量。

    • 离群度的计算公式是β = LIoU / LIoU,即将IoU损失标准化。

    • 聚焦机制会根据离群度分配梯度增益。对高质量的anchor box分配较小的梯度增益,对低质量的anchor box分配较小的梯度增益,从而减少低质量样本对模型训练的负面影响。

  2. 梯度增益分配策略

    • WIoU引入了一个“明智的”梯度增益分配策略,使得模型能够关注普通质量的anchor box。

    • 这种策略减少了高质量anchor box的竞争性,同时也减少了低质量样本产生的有害梯度,从而提高了模型的整体性能。

  3. 应用场景

    • WIoU被应用于最先进的实时检测器YOLOv7上,在MS-COCO数据集上的AP75从53.03%提高到54.50%。

具体实现

在具体实现上,WIoU通过以下步骤来优化BBR损失:

  1. 生成离群度:计算每个anchor box的离群度,作为衡量其质量的指标。

  2. 分配梯度增益:根据离群度动态调整梯度增益。对高质量和低质量的anchor box赋予较小的梯度增益,而对普通质量的anchor box赋予较大的梯度增益。

  3. 损失计算:结合IoU损失和聚焦机制计算最终的WIoU损失。

论文中的具体实现细节

根据论文内容,WIoU的公式和实现细节如下:

  • IoU损失公式LIoU = 1 - \frac{Wi \cdot Hi}{Su} 其中,Wi 和 Hi 分别是重叠区域的宽度和高度, Su 是联合区域的面积。

  • 离群度计算\beta = \frac{LIoU}{LIoU}

  • 梯度增益分配: 动态非单调聚焦机制根据离群度分配梯度增益,减少高质量和低质量样本对模型的不利影响。

WIoU的主要贡献在于引入了动态的非单调聚焦机制,使得模型能够更加有效地处理普通质量的anchor box,从而提高了边界框回归的性能。 

2.2 代码实现 

class WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1

3. 将EIoU、SIoU、WIoU、DIoU、FocusIoU添加到YOLOv5中

3.1 添加代码

关键步骤一: 在utils/metrics.py中,找到bbox_iou函数,可以把原有的注释掉,换成下面的代码:

class WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False,alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)# Get the coordinates of bounding boxesif xywh:  # transform from xywh to xyxy(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_else:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)# Intersection areainter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)# Union Areaunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter / (union + eps), alpha)  # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter / (union + eps),gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps),gamma)  # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)  # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter / (union + eps), gamma)  # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha)  # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou  # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2))  # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps),gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter / (union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

3.2 回调函数

关键步骤二:utils/loss.py中,找到ComputeLoss类中的__call__()函数,把Regression loss中计算iou的代码,换成下面这句:

                iou = bbox_iou(pbox, tbox[i], WIoU=True)if type(iou) is tuple:if len(iou) == 2:lbox += (iou[1].detach().squeeze() * (1 - iou[0].squeeze())).mean()iou = iou[0].squeeze()else:lbox += (iou[0] * iou[1]).mean()iou = iou[2].squeeze()else:lbox += (1.0 - iou.squeeze()).mean()  # iou lossiou = iou.squeeze()

4.完整代码分享

https://pan.baidu.com/s/16E9eva_mm6rHPaTOAyZ5uA?pwd=i3ba

提取码:i3ba  

5. 进阶

可以融合其他的注意力机制,修改backbone以及neck,多个模块进行改进。

6. 总结

WIoU(Wise-IoU)通过引入动态非单调聚焦机制来优化边界框回归损失。具体而言,它根据锚框的离群度(outlier degree)来分配梯度增益,离群度越高的锚框被认为质量越差,因此分配较小的梯度增益,而离群度较低的高质量锚框也分配较小的梯度增益。这种机制使得模型能够专注于普通质量的锚框,减少高质量和低质量样本对模型训练的负面影响,从而提高目标检测中的边界框定位精度和整体性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/39584.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nginx-rewrite模块详解

文章目录 前言一、ngx_http_rewrite_module模块二、指令详解1.break案例 2. if指令案例 3. return指令案例:return 的优先级 4. rewrite指令案例 5. set指令 总结 前言 nginx一些场景,我们需要使用rewrite模块。例如域名改了,为了利用网站se…

什么是YUV和IPB,PTS和DTS,视频编码解码过程

YUV 是一种在视频处理和压缩中常用的颜色空间。 它将图像的亮度 (Y) 与色度 (U 和 V) 成分分开。 这种分离对视频压缩和广播非常有益, 因为人眼对亮度变化比对颜色变化更敏感。 YUV 组件简介 Y (亮度):表示图像的亮度或灰度信息。U (色度):…

git - 变基、合并、重置后的回退操作

介绍 ORIG_HEAD 是 Git 中一个特殊的引用,用来指向某些操作(如合并、变基、重置等)前的状态。它可以用来快速恢复到这些操作之前的状态。下面是 ORIG_HEAD 的用法和一些常见的使用场景: 用法 1. 查看 ORIG_HEAD 使用以下命令查…

程序员需要具备的核心竞争力

随着IT人才的饱和,互联网就业形势越严峻。 作为一名工程师,需要具备哪些基本素养与能力,才能够应对这样的就业环境? 按照优先级排序如下: 1 业务理解、需求沟通能力 业务理解与需求沟通看似是技术经理、架构师需要…

四模卫星导航模块-高精度多模卫星定位技术

GPS02-UBX模块是思为无线基于u-blox最新款IC M10系列研发的一款全球卫星系统定位GPS/北斗模块。它可以支持BDS/GPS/GLONASS/Galileo四模定位(四选三,BDS和GLONASS不能同时使用)。GPS02-UBX模块能看到更多的卫星,有着更高的灵敏度,从而为用户获…

大模型日报 2024-07-04

大模型日报 2024-07-04 一、大模型资讯 大厂高管转战 AI 创业盘点:超 25 人,覆盖全产业链,AI 应用最热门 涉及多家互联网大厂高管加入生成式 AI 创业,涵盖多个领域及融资情况。 腾讯云发布自研大数据高性能计算引擎 Meson 软硬一体…

Linux脚本自动安装 docker

使用官方安装脚本自动安装 需使用 root 或sudu 权限账户安装 安装命令如下: curl -fsSL https://test.docker.com -o install-docker.shsudo sh install-docker.sh脚本中指令: –version 安装指定版本 Use the --version option to install a specific version, f…

浅谈chrome引擎

Chrome引擎主要包括其浏览器内核Blink、JavaScript引擎V8以及其渲染、网络、安全等子系统。下面我将对这些关键部分进行简要说明分析 1. Blink浏览器内核 Blink是Google开发的浏览器排版引擎,自Chrome 28版本起替代了Webkit作为Chrome的渲染引擎。Blink基于Webkit…

模余数最大公倍数

模余数最大公倍数 模余数题: 模余数 如果a%mb,则(am*k)%b。对m求模,余数为b的整数bm*k 题: 若干人,3001人为一排,余1人 4001人为一排,余2人 4999人为一排,余3人 求人数的最小值。 #include &l…

【Unity学习笔记】A*寻路算法

文章目录 图寻路算法BFS广度优先算法DFS深度优先贪心算法 引入权重Dijkstra算法 A*算法C#实现步骤 Unity中的A*算法A*优化建议 图 图的知识盘点 pathfinding 作为一名计算机专业的学生,对于图这种数据结构也是烂熟于心了。图是一种包含了多个结点的数据结构&…

案例分享:数据集市搭建方案中集成SQLFlow数据血缘分析工具

本文中描述的数据集市搭建方案是一家跨国公司在AWS平台上的具体实践案例。我公司参与其中的数据血缘部分的建设,SQLFlow数据血缘分析工具在该方案中帮助用户实现了数据血缘分析。 用户使用Redshift 数据库仓库进行数据集市开发。从各种数据源提取数据,并…

动态代理(通俗易懂)

程序为什么需要代理?代理长什么样? 例子 梳理 代理对象(接口):要包含被代理的对象的方法 ---Star 被代理对象:要实现代理对象(接口) ---SuperStar 代理工具类:创建一个代理,返回值用代理对象&#xff0c…

罗克韦尔 AB 1756-OA16控制器 模块 处理器

罗克韦尔 AB 1756-OA16该模块是任何自动化系统的重要组成部分,提供对各种过程的精确控制。它被设计为易于安装和使用,具有用户友好的界面,允许简单的配置和监控。 罗克韦尔 AB 1756-OA16控制器是一款为工业应用而设计的先进控制系统。它具有…

React快速入门-跟着AI学习react

React的快速入门可以遵循以下步骤进行,我将结合参考文章中的相关信息,以分点表示和归纳的形式给出详细步骤: 一、React基础知识了解 React的概念和特点: React是一个专注于构建用户界面的JavaScript库,采用声明式设计…

python将多个文件夹里面的文件拷贝到一个文件夹中

网上可以搜到很多方式,有的好使,有的不好使,亲测如下脚本可用,并可达到我想要的效果,只将多个文件夹里的文件拷贝到一个文件夹中,不拷贝文件夹本身,如果需要文件夹也拷贝打开注释行即可 import…

初次使用GitHub教程入门

注册一个github账户 访问地址:https://github.com/,点击右上角sign up,录入以下信息,邮箱,密码,账号,会有邮箱验证,跟着步骤来就好了 配置 本机上设置你的github的邮箱和用户名 …

51-5 权限维持2 - 影子账号(隐藏用户)

权限维持技术 权限维持技术(Persistence,也称为权限持久化)是一种能够在系统重启、用户更改密码或其他可能导致访问中断的情况下保持对系统访问的技术。例如,它包括创建系统服务、利用计划任务、修改系统启动项或注册表、以及映像劫持等方法。 创建影子账户 影子账户是指隐…

【管理咨询宝藏139】某大型快消集团公司多渠道销售管理体系方案

本报告首发于公号“管理咨询宝藏”,如需阅读完整版报告内容,请查阅公号“管理咨询宝藏”。 【管理咨询宝藏139】某大型快消集团公司多渠道销售管理体系方案 【格式】PDF版本 【关键词】罗兰贝格、营销咨询、战略规划 【核心观点】 - 销售体系建设主要需…

谷粒商城学习-06-使用vagrant快速创建linux虚拟机

这一节的内容是在Windows上安装虚拟机。 为什么要按照虚拟机呢? 原因是很多软件只能在Linux下运行,有的虽然也可以在Windows上运行,但从安装到运行会遇到很多问题,为这些解决这些问题花时间对于大多数人特别是初学者是没有什么价…

数字人直播源码开发全攻略揭秘:如何搭建自己的数字人直播平台?

当前,数字人直播逐渐成为众多中小型企业线上带货和品牌宣传的不二之选,而艾媒研究数据也显示,超五成以上的被调查群体的企业使用过虚拟人技术,超三成被调查群体的企业计划使用虚拟人技术。在此背景下,越来越多的创业者…