我们要在rtthread studio 开发环境中建立stm32h743xih6芯片的工程。我们使用一块stm32h743及fpga的核心板完成相关实验,核心板如图:
fal驱动的使用是建立在sfud驱动之上的,所以我们在上一节使用的工程基础上继续实验。
1.在上一节工程的基础上,我们添加fal驱动:
2.打开工程目录,将samples文件夹下的fal cfg.h复制到inc文件夹下,如图:
3.在drive文件夹下添加drv_flash_h7.c文件如图:
代码如下:
#include <rtconfig.h>
#include <rtdef.h>
#include <board.h>#ifdef BSP_USING_ON_CHIP_FLASH
#include "drv_config.h"
#include "drv_flash.h"#if defined(RT_USING_FAL)
#include "fal.h"
#endif//#define DRV_DEBUG
#define LOG_TAG "drv.flash"
#include <drv_log.h>/*** Read data from flash.* @note This operation's units is word.** @param addr flash address* @param buf buffer to store read data* @param size read bytes size** @retval The length of bytes that have been read*/
int stm32_flash_read(rt_uint32_t addr, rt_uint8_t *buf, size_t size)
{size_t i;if ((addr + size - 1) > FLASH_END){LOG_E("read outrange flash size! addr is (0x%p)", (void *)(addr + size));return -RT_ERROR;}for (i = 0; i < size; i++, buf++, addr++){*buf = *(rt_uint8_t *) addr;}return size;
}/*** Write data to flash.* @note This operation's units is word.* @note This operation must after erase. @see flash_erase.** @param addr flash address* @param buf the write data buffer* @param size write bytes size** @return The length of bytes that have been written*/
int stm32_flash_write(rt_uint32_t addr, const rt_uint8_t *buf, size_t size)
{rt_err_t result = RT_EOK;rt_uint32_t end_addr = addr + size - 1, write_addr;rt_uint32_t write_granularity = FLASH_NB_32BITWORD_IN_FLASHWORD * 4;rt_uint32_t write_size = write_granularity;rt_uint8_t write_buffer[32] = {0};if ((end_addr) > FLASH_END){LOG_E("write outrange flash size! addr is (0x%p)", (void *)(addr + size));return -RT_EINVAL;}if(addr % 32 != 0){LOG_E("write addr must be 32-byte alignment");return -RT_EINVAL;}if (size < 1){return -RT_EINVAL;}HAL_FLASH_Unlock();write_addr = (uint32_t)buf;__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR);while (addr < end_addr){if(end_addr - addr + 1 < write_granularity){write_size = end_addr - addr + 1;for(size_t i = 0; i < write_size; i++){write_buffer[i] = *((uint8_t *)(write_addr + i));}write_addr = (uint32_t)((rt_uint32_t *)write_buffer);}if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_FLASHWORD, addr, write_addr) == HAL_OK){for(rt_uint8_t i = 0; i < write_size; i++){if (*(rt_uint8_t *)(addr + i) != *(rt_uint8_t *)(write_addr + i)){result = -RT_ERROR;goto __exit;}}addr += write_granularity;write_addr += write_granularity;}else{result = -RT_ERROR;goto __exit;}}__exit:HAL_FLASH_Lock();if (result != RT_EOK){return result;}return size;
}/*** Erase data on flash.* @note This operation is irreversible.* @note This operation's units is different which on many chips.** @param addr flash address* @param size erase bytes size** @return result*/
int stm32_flash_erase(rt_uint32_t addr, size_t size)
{rt_err_t result = RT_EOK;rt_uint32_t SECTORError = 0;if ((addr + size - 1) > FLASH_END){LOG_E("ERROR: erase outrange flash size! addr is (0x%p)\n", (void *)(addr + size));return -RT_EINVAL;}rt_uint32_t addr_bank1 = 0;rt_uint32_t size_bank1 = 0;
#ifdef FLASH_BANK_2rt_uint32_t addr_bank2 = 0;rt_uint32_t size_bank2 = 0;
#endifif((addr + size) < FLASH_BANK2_BASE){addr_bank1 = addr;size_bank1 = size;
#ifdef FLASH_BANK_2size_bank2 = 0;
#endif}else if(addr >= FLASH_BANK2_BASE){size_bank1 = 0;
#ifdef FLASH_BANK_2addr_bank2 = addr;size_bank2 = size;
#endif}else{addr_bank1 = addr;size_bank1 = FLASH_BANK2_BASE - addr_bank1;
#ifdef FLASH_BANK_2addr_bank2 = FLASH_BANK2_BASE;size_bank2 = addr + size - FLASH_BANK2_BASE;
#endif}/*Variable used for Erase procedure*/FLASH_EraseInitTypeDef EraseInitStruct;/* Unlock the Flash to enable the flash control register access */HAL_FLASH_Unlock();EraseInitStruct.TypeErase = FLASH_TYPEERASE_SECTORS;EraseInitStruct.VoltageRange = FLASH_VOLTAGE_RANGE_3;SCB_DisableDCache();if(size_bank1){EraseInitStruct.Sector = (addr_bank1 - FLASH_BANK1_BASE) / FLASH_SECTOR_SIZE;EraseInitStruct.NbSectors = (addr_bank1 + size_bank1 -1 - FLASH_BANK1_BASE) / FLASH_SECTOR_SIZE - EraseInitStruct.Sector + 1;EraseInitStruct.Banks = FLASH_BANK_1;if (HAL_FLASHEx_Erase(&EraseInitStruct, &SECTORError) != HAL_OK){result = -RT_ERROR;goto __exit;}}#ifdef FLASH_BANK_2if(size_bank2){EraseInitStruct.Sector = (addr_bank2 - FLASH_BANK2_BASE) / FLASH_SECTOR_SIZE;EraseInitStruct.NbSectors = (addr_bank2 + size_bank2 -1 - FLASH_BANK2_BASE) / FLASH_SECTOR_SIZE - EraseInitStruct.Sector + 1;EraseInitStruct.Banks = FLASH_BANK_2;if (HAL_FLASHEx_Erase(&EraseInitStruct, &SECTORError) != HAL_OK){result = -RT_ERROR;goto __exit;}}
#endif__exit:SCB_EnableDCache();HAL_FLASH_Lock();if (result != RT_EOK){return result;}LOG_D("erase done: addr (0x%p), size %d", (void *)addr, size);return size;
}#if defined(RT_USING_FAL)
static int fal_flash_read_128k(long offset, rt_uint8_t *buf, size_t size);
static int fal_flash_write_128k(long offset, const rt_uint8_t *buf, size_t size);
static int fal_flash_erase_128k(long offset, size_t size);
const struct fal_flash_dev stm32_onchip_flash_128k = { "onchip_flash_128k", STM32_FLASH_START_ADRESS, FLASH_SIZE_GRANULARITY_128K, (128 * 1024), {NULL, fal_flash_read_128k, fal_flash_write_128k, fal_flash_erase_128k} };static int fal_flash_read_128k(long offset, rt_uint8_t *buf, size_t size)
{return stm32_flash_read(stm32_onchip_flash_128k.addr + offset, buf, size);
}
static int fal_flash_write_128k(long offset, const rt_uint8_t *buf, size_t size)
{return stm32_flash_write(stm32_onchip_flash_128k.addr + offset, buf, size);
}static int fal_flash_erase_128k(long offset, size_t size)
{return stm32_flash_erase(stm32_onchip_flash_128k.addr + offset, size);
}#endif
#endif /* BSP_USING_ON_CHIP_FLASH */
4.在在board.h文件打开BSP_USING_ON_CHIP_FLASH如图:
5.对fal_cfg.h做更改,使其和h7芯片对应,如图:
6.这时候编译已经没有错误了,我们下载测试下:
可以看到,[I/SFUD] Probe SPI flash norflash0 by SPI device spi10 success.RT-Thread Flash Abstraction Layer initialize success.说明sfud和fal都init成功,并且打印了分区表。
7.测试几个fal指令,都没有问题:
8.我们测试下性能,性能将会测试 Flash的擦除、写入及读取速度,同时将会测试写入及读取数据的准确性,保证整个 Flash 或整个分区的 写入与读取 数据的一致性。
指令为fal bench 4096 yes
其余指令可以参考:
msh />fal
Usage:
fal probe [dev_name|part_name] - probe flash device or partition by given name
fal read addr size - read 'size' bytes starting at 'addr'
fal write addr data1 ... dataN - write some bytes 'data' starting at 'addr'
fal erase addr size - erase 'size' bytes starting at 'addr'
fal bench <blk_size> - benchmark test with per block size