深度学习检测算法YOLOv5的实战应用

在当前的检测项目中,需要一个高效且准确的算法来处理大量的图像数据。经过一番研究和比较,初步选择了YOLOv5作为算法工具。YOLOv5是一个基于深度学习的检测算法,以其快速和准确而闻名。它不仅能够快速处理图像数据,还能提供较高的检测准确率。

  • 项目地址: https://github.com/ultralytics/yolov5
  • 项目文档:https://docs.ultralytics.com/yolov5/tutorials/

配置环境

环境准备: 在进行YOLOv5的训练和预测之前,我们需要确保环境已经准备好。以下是具体的步骤:

  1. 创建虚拟环境: 使用conda创建一个新的虚拟环境,命名为yolov5。

    conda create -n yolov5 python=3.8
    
  2. 激活虚拟环境: 激活刚刚创建的yolov5虚拟环境。

    conda activate yolov5
    
  3. 安装依赖包: 安装必要的依赖包,这里以GPU环境为例。

    pip install ultralytics
    
  4. 克隆YOLOv5项目: 从GitHub克隆YOLOv5项目。

    git clone https://github.com/ultralytics/yolov5
    
  5. 进入项目目录: 进入克隆的YOLOv5项目目录。

    cd yolov5
    
  6. 安装项目依赖: 安装项目中的依赖包。

    pip install -r requirements.txt
    

    注意:requirements.txt中的troch版本需要与你的硬件资源和CUDA版本相匹配。如果不匹配,可能无法启动GPU进行训练。

通过以上步骤,我们确保了环境已经准备好,可以顺利进行YOLOv5的训练和预测。接下来,将介绍如何进行训练。

训练

使用官方数据或者自己按照coco格式进行标注的数据都可以很简单的开始进行训练。如果是自我标注数据的话,数据格式:

  • images:文件夹里放原始图片;
  • labels:文件夹里放标注的标签文件;

1713752728165.png

训练是深度学习模型的核心环节,它决定了模型的性能和准确性。YOLOv5提供了强大的训练功能,允许用户根据自己的需求进行定制。以下是一个基本的训练命令示例,以及每个参数的含义:

python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml  --batch-size 128
  • -–data coco.yaml:指定训练数据集的配置文件。
  • -–epochs 300:设置训练的轮数(epoch)。
  • -–weights:指定预训练模型的权重,如果使用空字符串,则不加载预训练权重。
  • -–cfg yolov5n.yaml:指定配置文件,用于定义模型的结构和训练参数。
  • -–batch-size 128:设置每次迭代处理的图像数量

以上命令可以再现 YOLOv5 COCO 的效果。模型和数据集将从 YOLOv5 的最新版本中自动下载。在 V100 GPU 上,模型可选YOLOv5n/s/m/l/x,对应 的训练时间分别为 1/2/4/6/8 天(使用多 GPU 训练将更快)。尽可能使用大的 --batch-size 值(16,32,64,128),或者传递 --batch-size -1 以启用 YOLOv5 的自动批量处理功能。显示的批量大小适用于 V100-16GB GPU。训练的时候也可以加入预训练模型和多GPU--weights ./pre-models/yolov5m.pt --device 0,1

可选的预训练模型如下表所示,按照精度和推理时间选择适合自己的模型:

1713753606217.png

1713752328003.png

  • 所有检查点均按照默认设置训练了 300 个epoch。
  • Nano 和 Small 模型采用了 hyp.scratch-low.yaml 的超参数配置,而其他模型则采用了 hyp.scratch-high.yaml。
  • mAPval 值指的是在 COCO val2017 数据集上,单模型单尺度的评估结果。 通过以下命令可以复现这一结果:python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
  • 速度是在 AWS p3.2xlarge 实例上,对 COCO val 图像集进行平均测量的。NMS 时间(约每张图像 1 毫秒)未计入其中。 使用以下命令复现速度测试:python val.py --data coco.yaml --img 640 --task speed --batch 1
  • TTA(测试时间增强)包括反射和尺度增强。 通过以下命令可以复现 TTA:python val.py --data coco.yaml --img 1536 --iou 0.7 --augment

1713752673263.png

预测

预测是深度学习模型的最终目的,它将训练好的模型应用于实际数据,以实现目标检测。YOLOv5提供了便捷的预测功能,可以快速对图像或视频进行目标检测。

使用项目已有的detect.py文件进行预测

  • detect.py可在各种不同的来源上执行推理任务,它会自动从最新的 YOLOv5 版本中下载所需的模型或者使用已训练好的模型,并将推断结果保存到 runs/detect 文件夹中。
python detect.py --weights yolov5s.pt --source  img.jpg   # image
  • weights:指定模型的权重文件,这里使用预训练的yolov5s模型,如果本地有的话就不下载,如果没有的话就网上进行下载;
  • source:除了图片,YOLOv5还支持多种输入源,包括视频、网络摄像头、屏幕截图等。可以根据需要选择合适的输入源。
    • 0: # webcam
    • img.jpg # image
    • vid.mp4 # video
    • screen # screenshot
    • path/ # directory
    • list.txt # list of images
    • list.streams # list of streams
    • 'path/*.jpg' # glob
    • 'https://youtu.be/LNwODJXcvt4' # YouTube
    • 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream

使用torch.hub进行预测

YOLOv5 PyTorch Hub 提供自动推理服务。所需的模型将从最新的 YOLOv5 版本自动下载。

import torch# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # or yolov5n - yolov5x6, custom# Images
img = "https://ultralytics.com/images/zidane.jpg"  # or file, Path, PIL, OpenCV, numpy, list# Inference
results = model(img)# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

上述内容就是从网络上下载模型并进行推理,如果想使用自己的模型的话进行推理,这里对其进行了封装,代码如下:

import os
import sys
import json
import torch
import numpy as npCURRENT_DIR = os.path.abspath(os.path.dirname(__file__)) + '/'class Detector:"""implement detector"""def __init__(self):# load modelself.model = torch.hub.load(os.path.join(CURRENT_DIR, './'), 'custom',path=os.path.join(CURRENT_DIR, './yolov5s.pt'),source='local', device='cpu')def detect_img(self, img_file):"""detect from inputArgs:file, Path, PIL, OpenCV, numpy, list"""# inferenceresults = self.model(img_file)crops = results.crop(save=False)  # cropped detections dictionaryreturn cropsif __name__ == '__main__':dt = Detector()img = sys.argv[1]detect_res = dt.detect_img(img)print(detect_res)

这里使用results.crop是因为这个返回的信息会比较多,返回的结果包含预测的标签,置信度,以及检测区域等,便于后续业务逻辑处理。

总结

YOLO系列算法是检测算法里面非常实用的一种工具项目,能够在工业界得到很好的使用。本文介绍了一下Yolov5的训练及预测流程,便于大家使用以及后续自己回顾使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/3547.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

两数、三数以及四数之和

两数之和 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出和为目标值 target 的那两个整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你可以按…

Java基础教程(7)-Java中的面向对象和类

面向对象编程 Java是一种面向对象的编程语言。面向对象编程,英文是Object-Oriented Programming,简称OOP 面向对象和面向过程的区别 面向过程编程是自顶而下的编程模式;把问题分解成一个一个步骤,每个步骤用函数实现,依次调用即可 面向对象编程是将事务高度抽象化的编程…

acwing算法提高之图论--拓扑排序

目录 1 介绍2 训练3 参考 1 介绍 本专题用来记录拓扑排序相关的题目。 求拓扑序列算法的关键步骤: 把入度为0的结点插入队列q。弹出队头t(将t记录下来),遍历队头t的下一个结点,将其入度减1。操作之后,如…

【OceanBase诊断调优】——hpet(高精度时钟源)引起的CPU高问题排查

最近总结一些诊断OCeanBase的一些经验,出一个【OceanBase诊断调优】专题出来,也欢迎大家贡献自己的诊断OceanBase的方法。 1. 前言 昨天在问答区帮忙排查一个用户CPU高的问题,帖子链接:《刚刚新安装的OceanBase集群,…

Rime 如何通过 iCloud 实现词库多端同步,Windows、iOS、macOS

Rime 如何通过 iCloud 实现词库多端同步,Windows、iOS、macOS 一、设备环境 最理想的输入环境就是在多端都使用同一个词库,这样能保持多端的输入习惯是一致的。 以我为例,手头每天都要用到的操作平台和对应的输入法: 操作系统设…

39 vue.js

1.1 vue是什么? vue是当下主流的前端框架,用于构建用户界面的 渐进式 自底向上增量开发的MVVM框架。 渐进式:其实每个框架都有自己的特点,在开发的过程中,可以在原有的系统上,把其中一两个功能用VUE…

【热门前端【vue框架】】——vue框架和node.js的下载和安装保姆式教程

👨‍💻个人主页:程序员-曼亿点 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 曼亿点 原创 👨‍💻 收录于专栏&#xff1a…

如何修复Django中的“ImproperlyConfigured”错误?

在Django中,通常会遇到“ImproperlyConfigured”错误,这表示配置不正确或缺少必要设置。下面是一些常见的修复方法: 检查settings.py文件:确保设置了正确的数据库配置、应用程序、模板路径、静态文件路径等。确保所有必要的设置都…

使用Nginx和内网穿透实现多个本地Web站点的公网访问

在需要将多个本地Web站点暴露到公网的情况下,可以通过Nginx配置文件的修改结合内网穿透技术来实现。下面是具体的步骤和示例: 1. 安装和配置Nginx 首先,确保已经在服务器上安装了Nginx,并且配置了基本的Nginx服务器块&#xff0…

【ARM 裸机】模仿 STM32 驱动开发

1、修改驱动 对于 STM32 来说,使用了一个结构体将一个外设的所有寄存器都放在一起,在上一节的基础上进行修改; 1.1、添加清除 bss 段代码, 1.2、添加寄存器结构体 新建一个文件,命名imx6u.h,注意地址的连…

前端如何优化工程

文章目录 使用CDN1. 请求定位:2.内容缓存:3.负载均衡:4.边缘计算: 优化Webpack1.合理配置Loader:2.优化代码分割:3.压缩和优化输出文件:4.利用Tree Shaking:5.优化解析速度&#xff…

NLP Step by Step -- How to use pipeline

正如我们在摸鱼有一手:NLP step by step -- 了解Transformer中看到的那样,Transformers模型通常非常大。对于数以百万计到数千万计数十亿的参数,训练和部署这些模型是一项复杂的任务。此外,由于几乎每天都在发布新模型&#xff0c…

Linux系统网络---DNS域名解析服务

目录 一、DNS的简介 DNS系统的分布式数据结构👇 DNS系统类 两种查询方式 二.正向解析实验 1.先关闭防火墙、selinux 2.安装bind 3.查看配置、修改配置 4.修改区域配置文件 正向解析👇 反向解析👇 5.修改 正向解析&#x1f…

js音频指定扬声器

做音视频开发时候,看到阿里音视频能力,有这个功能,怀着好奇的心去搜索果然发现是有办法做到的,可能比较冷门平时用不到,记录下; const devices await navigator.mediaDevices.enumerateDevices(); const a…

6.Linux常用命令---文件目录管理(3)

6.37 read --读取标准输入命令 read内部命令被用来从标准输入读取单行数据。这个命令可以用来读取键盘输入&#xff0c;当使用重定向时&#xff0c;可以读取文件中的一行数据。 read a < 123.txt #读取文件123.txt中的内容&#xff0c;保存到变量a中参数&#xff1a; -a&a…

python环境安装jupyter

1 前提条件&#xff1a;python环境 系统&#xff1a;win10 python&#xff1a;本地已经有python&#xff0c;可以查看本地的python版本&#xff1a; C:\Users\PC>python --version Python 3.8.10 2 安装jupyter并启动 安装jupyter C:\Users\PC>pip install jupyter …

Qt xml示范

1.数据格式 #ifndef XML_DATA_H #define XML_DATA_H#include<QWidget>struct Student {int s_id;QString s_name;double s_math_score;double s_english_score;}; struct Teacher{int t_id;QString t_name;QVector<Student> t_students_v; };#endif // XML_DATA_H…

笔试题-构建非二叉树,且非递归遍历-利用栈

普通版本 package com.fang.恒天软件;import java.util.*; import java.util.stream.Stream;public class Tree {TreeNode head;public Tree(TreeNode node) {this.head node;}class ForeachNoMethodException extends Exception {public ForeachNoMethodException(String me…

面试:JVM垃圾回收

一、三种垃圾回收算法 1、标记清除&#xff08;已废弃&#xff09; 找到根对象&#xff08;局部变量正在引用的对象、静态变量正在引用的对象&#xff09;&#xff1b;沿着根对象的引用链&#xff0c;查看当前的对象是否被根对象所引用&#xff0c;若被引用&#xff0c;则加上…

区块链 | OpenSea 相关论文:Toward Achieving Anonymous NFT Trading(一)

​ &#x1f951;原文&#xff1a; Toward Achieving Anonymous NFT Trading &#x1f951;写在前面&#xff1a; 本文对实体的介绍基于论文提出的方案&#xff0c;而非基于 OpenSea 实际采用的方案。 其实右图中的 Alice 也是用了代理的&#xff0c;不过作者没有画出来。 正文…