【模型】5分钟了解决策树是一个什么模型

本站原创文章,转载请说明来自《老饼讲解-机器学习》[www.bbbdata.com(https://www.bbbdata.com/ml)

决策树模型是机器学习中不可不学的模型之一,本文简单直接地快速讲解决策树是什么,如何实现。

一、决策树模型

决策树一般包括ID3决策树,C4.5决策树与CART决策树。
ID3与C4.5决策树是基于熵的概念构建的决策树,现在已经用得相对较少,目前用得较多的是CART决策树。
CART决策树全称为Classification And Regression Tree,即分类与回归树。因此CART决策树既可以用来做分类,又可以用来做回归。

1.1.ID3决策树

ID3决策树
ID3决策树是最早提出的决策树,它的变量是枚举变量,然后根据枚举值不断分枝决策,最终到达的叶子节点就是模型的预测结果。ID3决策树在构建时使用信息熵的来确定选择哪个变量进行构建。

1.2. CART决策树

CART决策树模型是一棵二叉树,如下:
CART决策模型
CART决策树模型是一棵二叉树,会根据变量不断地进行判断,最后到达叶子节点时,节点上的类别(做回归时则是值)就是模型的预测结果。CART决策树在构建时一般使用GINI系数来确定选择哪个变量来构建。
CART决策树的详细构建流程可参考:【原理】CART决策树构建过程详细讲解

1.3. C4.5决策树

C4.5决策树可以认为是ID3决策树到CART决策树的过渡,即支持枚举变量,又支持连续变量。C4.5决策树使用信息增益比来确定选择哪个变量进行构建。

二、如何在python中构建一棵决策树

2.1. 数据说明

不妨以鸢尾花数据为例(即sk-learn中的iris数据)
鸢尾花数据共有150个样本,包括鸢尾花的四个特征与鸢尾花的类别,具体数据如下:
鸢尾花数据
花萼长度 sepal length (cm) 、花萼宽度 sepal width (cm)
花瓣长度 petal length (cm) 、花瓣宽度 petal width (cm)
山鸢尾:0,杂色鸢尾:1,弗吉尼亚鸢尾:2

2.2. python中构建一棵CART决策树

下面使用python的sklearn包来构建一棵CART决策树,具体代码如下:

from sklearn.datasets import load_iris
from sklearn import tree
#----------------数据准备--------------------
iris = load_iris()                                 # 加载数据
#---------------模型训练---------------------
clf = tree.DecisionTreeClassifier()                # sk-learn的决策树模型
clf = clf.fit(iris.data, iris.target)              # 用数据训练树模型构建()
r = tree.export_text(clf, feature_names=iris['feature_names'])#---------------模型预测结果------------------
text_x = iris.data[[0,1,50,51,100,101], :]
pred_target_prob = clf.predict_proba(text_x)        # 预测类别概率
pred_target = clf.predict(text_x)                   # 预测类别#---------------打印结果---------------------
print("\n===模型======")
print(r)
print("\n===测试数据:=====")
print(text_x)
print("\n===预测所属类别概率:=====")
print(pred_target_prob)
print("\n===预测所属类别:======")
print(pred_target)

运行结果如下:
构建好的决策树模型:
在这里插入图片描述
预测结果:
在这里插入图片描述
可以看到模型的预测结果是正确的。

三、如何将决策树可视化

要绘画出决策树的模型结构,可以使用graphviz 包,下面是一个代码示例与实现效果。

from sklearn.datasets import load_iris
from sklearn import tree
import graphviz 
#----------------数据准备----------------------------
iris = load_iris()                          # 加载数据
#---------------模型训练----------------------------------
clf = tree.DecisionTreeClassifier()         # sk-learn的决策树模型
clf = clf.fit(iris.data, iris.target)       # 用数据训练树模型构建()
r = tree.export_text(clf, feature_names=iris['feature_names'])
dot_data = tree.export_graphviz(clf, out_file=None, feature_names=iris.feature_names,  class_names=iris.target_names,  filled=True, rounded=True,  special_characters=True)  
graph = graphviz.Source(dot_data)  
graph                                    # 显示图形。(如果没显示,则需要独立运行这一句)
#graph.render("iris")                    # 将图形保存为iris.pdf文件。
#graph.view()                            # 直接打开pdf文件展示

运行后就可以打印出决策树的模型结构,如下:
决策树可视化
上面的图比较丑,是graphviz 的默认图案。实际上graphviz 是非常强大的,可以按自己的喜爱设置得更加好看。
特别说明的是,软件中一般都只实现CART决策树, 如果要实现ID3或C4.5决策树,就需要自己仔细地去按原理重新实现了。


相关链接:

《老饼讲解-机器学习》:老饼讲解-机器学习教程-通俗易懂
《老饼讲解-神经网络》:老饼讲解-matlab神经网络-通俗易懂
《老饼讲解-神经网络》:老饼讲解-深度学习-通俗易懂

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/34423.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记录一个笔误引发的bug导致生产环境报错,但是本地环境,测试环境运行正常

记录一个笔误引发的bug导致生产环境报错,但是本地环境,测试环境运行正常 因为headers请求头过长导致报错 在feign外调其他系统时候,是重新封装headers 问题在于 MultiValueMap 属于静态变量。这里讲userAgent的内容传递过去。是不断累加的…

Qt项目天气预报(8) - 绘制温度曲线 + 回车搜索(最终篇)

全部内容在专栏: Qt项目 天气预报_mx_jun的博客-CSDN博客 目录 绘制温度曲线 事件过滤器在子控件上绘图 子控件下载事件过滤器 事件过滤器进行绘图 - eventFilter 画初步高温曲线 画初步低温曲线 效果演示 画低温曲线 画高温曲线 效果演示 按下回车搜索: …

收银系统源码-千呼新零售2.0【宠物、养生、大健康行业解决方案】

千呼新零售2.0系统是零售行业连锁店一体化收银系统,包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体,线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货、宠物、中医养生、大健康等连锁店…

Web渗透:文件上传漏洞

文件上传漏洞(File Upload Vulnerability)是网络安全中的一种常见漏洞,攻击者可以通过此漏洞将恶意文件上传到服务器,从而执行任意代码、覆盖重要文件、或进行其他恶意操作。这种漏洞可能带来严重的安全风险,包括数据泄…

在 PMP 考试中,项目管理经验不足怎么办?

在项目管理的专业成长之路上,PMP认证如同一块里程碑,标志着从业者的专业水平达到了国际公认的标准。然而,对于那些项目管理经验尚浅的考生来说,这座里程碑似乎显得有些遥不可及。那么,在PMP考试准备中,项目…

AI技术在呼吸健康诊断领域的前沿进展

近期,谷歌科研团队在《自然》杂志上发布了一项引人注目的研究成果,该研究聚焦于利用人工智能(AI)技术对人类咳嗽及呼吸音进行分析,以实现对个体健康状况的精准评估。这一创新系统的研发基于大规模音频数据的深度学习&a…

C++STL 6大组件—你必知必会的编程利器

课程总目录 文章目录 一、vector容器二、deque和list容器三、vector、deque、list横向对比四、详解容器是配置stack、queue、priority_queue五、无序关联容器六、有序关联容器七、迭代器八、函数对象九、泛型算法和绑定器 一、vector容器 底层数据结构是动态开辟的数组&#x…

Ai指令优化文章成爆款实战记录6.26

大家好,我是网创有方的站长,继上篇文章出来之后,立马测试了一翻,没想到第一篇就出来了小爆款。展现量当天3万多,阅读量也有7000多的一个数据。虽说不是很高,相比平常几十的阅读量来说,进步还是非…

process.cwd()与__dirname的区别

process.cwd() 是当前执行node命令时候的文件夹地址 ——工作目录,保证了文件在不同的目录下执行时,路径始终不变__dirname 是被执行的js 文件的地址 ——文件所在目录 在electron进程中使用 如果使用__dirname则会读取到当前运行目录(dist_electron)下…

【大模型】大模型微调方法总结(二)

1.Adapter Tuning 1.背景 2019年谷歌的研究人员首次在论文《Parameter-Efficient Transfer Learning for NLP》提出针对 BERT 的 PEFT微调方式,拉开了 PEFT 研究的序幕。他们指出,在面对特定的下游任务时,如果进行 Full-Fintuning&#xff0…

【yolov8:metrics = model.val()报错TypeError: int() 】

今天在运行yolov8的val模型测验时报错: TypeError: int() argument must be a string, a bytes-like object or a number, not ‘KeyboardModifier’ 看了很多博主和文章,最后找到了解决方法: 在代码头部使用以下代码,重新运行…

python turtle 004Hello Kity

代码:pythonturtle004HelloKity资源-CSDN文库 # 作者V w1933423 import math import turtle as t# 设置画笔速度 t.speed(0)# 定义函数画弧 def myarc(t1, r, angle):arc_length 2 * math.pi * r * angle / 360 # 弧长n int(arc_length / 3) 1 # 分割段数step…

【大模型】大模型微调方法总结(三)

1. Prefix-tuning 1.背景 2021年论文《Prefix-Tuning: Optimizing Continuous Prompts for Generation》中提出了 Prefix Tuning 方法。与Full-finetuning 更新所有参数的方式不同,该方法是在输入 token 之前构造一段任务相关的 virtual tokens 作为 Prefix&#x…

二叉树——对称二叉树

目录 1:题目分析及思路 2:代码实现和分析 1:代码 2:分析 1:题目分析及思路 这里我们有一个二叉树的根节点 root , 检查它是否轴对称。 思路: 如上图,示例1是一颗对称的二叉树&a…

基于JSP的列车票务信息管理系统

开头语: 你好,我是专注于计算机科学与技术研究的学长。如果你对列车票务信息管理系统感兴趣或有相关需求,欢迎联系我。 开发语言:Java 数据库:MySQL 技术:JSP技术 工具:IDE、数据库管理工具…

反射及动态代理

反射 定义: 反射允许对封装类的字段,方法和构造 函数的信息进行编程访问 图来自黑马程序员 获取class对象的三种方式: 1)Class.forName("全类名") 2)类名.class 3) 对象.getClass() 图来自黑马程序员 pac…

pytest-yaml-sanmu(五):跳过执行和预期失败

除了手动注册标记之外,pytest 还内置了一些标记可直接使用,每种内置标记都会用例带来不同的特殊效果,本文先介绍 3 种。 1. skip skip 标记通常用于忽略暂时无法执行,或不需要执行的用例。 pytest 在执行用例时,如果…

LATR 算法解读

文章目录 1. 论文2. 环境安装3. 代码解读3. 1 初始化 lane query3.1.1 SparseInsDecoder3.1.2 loss 计算3.1.3 初始化instance query3.2 ref points 的生成3.3 lane query 和feats进行attention3.3.1 self attn3.3.1 cross attn4. 参考1. 论文 2. 环境安装 146 [2024-06-20 10…

收款机TTS语音芯片新方案:WT3000T8,双语合成流畅,字库解码多样!

发布时间:2024-06-26 09:20 浏览次数:88次 一:方案背景概述 随着科技的飞速发展,人工智能和语音识别技术在各个领域都得到了广泛应用。其中,文本转语音(TTS)技术以其独特的优势,在收…

基于springboot+vue的梦幻玩具乐园的设计与实现(在线购物平台)

需要源码和论文的小伙伴可以私信博主(有偿) ​​​​​课题目的与意义 随着互联网的不断普及与在线销售平台的迅猛发展,在线购物日益受到广大消费者的青睐与追捧。通过构建基于Spring BootVue的在线玩具商城,可以为玩具制造商、…