文章目录
- 1. ARQ自动重传协议
- 1.1 停止等待ARQ
- 1.2 连续ARQ
- 1.3 总结
- 2. TCP的流量控制
- 3. TCP的拥塞控制
- 3.1 慢开始算法
- 3.2 拥塞避免算法
- 3.3 快重传算法
- 3.4 快恢复算法
1. ARQ自动重传协议
自动重传请求(Automatic Repeat-reQuest),通过使用确认和超时这两个机制,在不可靠服务的基础上实现可靠的信息传输,其中包括停止等待ARQ协议和连续ARQ协议
1.1 停止等待ARQ
发送窗口大小为1,接收窗口大小也为1
发送方每发送一个数据包,就要等待接收方返回ack包,如果在定时时间内没收到ack包,则需要重新发送,而这个超时时间,是需要经过RTT往返时延(从发送方发送数据开始,到发送方接收到来自接收方的确认消息)来计算出来的。
当数据正常传输时,发送完M1数据包后,等待接收方的M1数据包ACK,收到后继续发送M2数据包并等待ACK
当数据传输出错时,假设数据包M1丢失,则一定超时时间后,进行一次重传。
1.2 连续ARQ
连续ARQ发送方可连续发送多个分组的数据,而不需要像停止等待ARQ一样,等到应答再进行发送,大大提升带宽的利用率。
1)滑动窗口概念
滑动窗口协议在发送方和接收方之间各自维持一个滑动窗口,两个窗口大小不一定相同。
主要提供TCP的可靠性(基于确认重传机制)以及TCP的流控特性(控制网络传输时的流量,避免拥塞发生)。
滑动窗口其实类似一个收费站,收费站也就是窗口的位置是不变的,数据不停的在进行滑动。
2)滑动窗口重发机制
发送端维护一个窗口,窗口内有多个分组,分组个数等于窗口的大小,窗口内的分组可以直接连续发送数据,不需要等待接收端返回的ACK,这样可以提升对信道的利用率。
TCP协议提供两种滑动窗口协议:回退(Go-Back-N)以及选择重传(Selective Repeat来解决连续ARQ模式下传输数据出错的问题。
1)回退(Go-Back-N)协议
发送窗口大小 n > 1,接收窗口 = 1,当发生数据丢失时,会重传所有大于最后一个ACK的包
在这种模式下,发送端会维护一块发送端的数据缓存,当需要重发窗口中的分组报文,便会从缓存里读取数据发送。
这里采用的是累计确认的形式,不像停止等待ARQ,现在不需要对数据帧进行逐个的确认,而是对按序到达的最后一个分组进行确认,假设发送方发送了5个包,但是第三个包丢失,则接收方只返回前两个包的ACK,此时发送方因为不知道后面的三个包有没有发送成功,只能选择这三个包进行重传。
2)选择重传(Selective Repeat)协议
发送窗口大小 > 1,接收窗口大小 > 1,当发生数据丢失,只重传丢失的数据包。
此时已经无法依赖ACK包去做选择重传了,因为ACK只能表示收到了哪些包,但中间的包丢失时,则无法表示。
所以在这里引入了SACK**(Selective Acknowledgement)**,存储在TCP头部的可变选项中,记录接收窗口缓存中还未收到的数据包信息。
具体例子如下:
1.3 总结
协议 | 窗口大小 | 是否有序接收 | 具体做法 |
---|---|---|---|
停止等待ARQ | 发送=1, 接收=1 | 有序 | 发送窗口每次只能发送一个数据包,然后就停止等待ack包。接收窗口有序的接收数据包,接收成功后发送ack包给发送窗口,如果收到的数据包是无序的,就直接丢弃 |
连续ARQ-回退协议 | 发送 = N,接收 = 1 | 有序 | 发送窗口每次最多一次性发送n个数据包,接收窗口有序的接收数据包,当接收到有序的数据包后,发送ack包给发送窗口,如果收到的数据包时无序的,就直接丢弃。当数据包丢失的时候,会将发送窗口中的后面的所有数据包都重新发送 |
连续ARQ-选择重传协议 | 发送 = N,接收 = N | 无序 | 发送窗口每次最多一次性发送n个数据包,接收窗口无序的接收数据包,当接收到数据包后,发送ack包给发送窗口,ack中会携带SACK信息,也就是接收窗口中的缓存信息。发送端会根据SACK信息来只重传丢失的数据包 |
2. TCP的流量控制
目的:防止分组丢失进而触发自动重传机制,造成网络流量的浪费。
原理:如果发送者发送数据过快,接收者来不及接收,那么就会有数据分组丢失。为了避免这种分组丢失,接收端会通知发送端它的接收窗口大小(TCP首部中有一个窗口大小值),此时发送者也将发送窗口大小更改为这个值,让接收者来得及接收。
具体案例:假设一开始主机A和B的窗口都是400,那么在发送时,主机A会连续发送400个字节的数据,如果201~300号意外丢失了,主机B会返回响应ACK=1,ack=201,rwnd=300,这表示主机B已接收到201号之前的数据,并将自己的接收窗口设置为300。此时A收到后将发送窗口大小也设置为300,达到流量控制的目的。
3. TCP的拥塞控制
目的:防止过多的数据注入到网络中,避免出现网络负载过大的情况,常用的算法就是:
慢开始、拥塞避免、快重传、快恢复
原理:发送方维持一个拥塞窗口cwnd(congestion window)的状态变量,拥塞窗口的大小取决于网络的拥塞程度,并且动态地在变化。另外考虑到接受方的接收能力 发送方的发送窗口小于或等于拥塞窗口
3.1 慢开始算法
原理:一开始不发送大量的数据,防止网络负载过大,由小到大逐渐增加拥塞窗口的大小,来探测网络的拥塞程度
具体案例:发送方每次经过一个传输轮次之后,拥塞窗口cwnd就直接加倍,这样比直接一下把许多报文注入网络要慢的多。
3.2 拥塞避免算法
原理:当拥塞窗口cwnd到达慢开始门限ssthresh后,让拥塞窗口缓慢增长,每经过一个传输轮次后,将cwnd值加一,而不是直接加倍。使cwnd已经到达一定值的情况下,网络不容易出现阻塞。
慢开始门限ssthresh与拥塞窗口cwnd的关系:
当cwnd<ssthresh时,使用慢开始算法
当cwnd>ssthresh时,改用拥塞避免算法
当cwnd=ssthresh时,慢开始与拥塞避免算法任意
具体案例:拥塞窗口cwnd初始值为1,慢开始门限ssthresh初始值是16
1)在cwnd<ssthresh,执行慢开始算法,cwnd的值在经过一个轮次传输后值翻倍
2)当cwnd>ssthresh,执行拥塞避免算法,每一个轮次,cwnd的值只加1
3)当cmnd = 24时,假设发生网络阻塞,将进行”乘法减小“,ssthresh = cwnd / 2,cwnd为0,重新开始慢开始算法
3.3 快重传算法
原理:快速进行重传,当接收方在收到一个失序的报文段后就立即发出重复确认,发送方只要一连收到三个重复确认就认为是网络阻塞,立即重传对方尚未收到的报文段,而不必继续等待设置的重传计时器时间到期。(提高网络吞吐量百分之20左右)
具体案例:
3.4 快恢复算法
原理:快速恢复传输,和快重传搭配使用,当发生快重传时,进行”乘法减小“算法,此时不会再进行慢开始算法,而是执行快恢复算法,直接将cwnd设置为ssthresh减半后的值。
具体案例:cwnd为24时,收到三个重复确认,则进行快重传,此时执行”乘法减小“算法,ssthresh = cwnd/2,cwnd = ssthresh,直接便开始了拥塞避免算法。
注意:在TCP Reno版本采用快恢复算法时,慢开始算法只是在TCP连接建立时和网络出现超时时才使用,其他例如收到三个重复的确认,则会执行快恢复算法。