【AI大模型】GPTS 与 Assistants API

前言

          2023 年 11 月 6 日,OpenAI DevDay 发表了一系列新能力,其中包括:GPT Store 和 Assistants API。

GPTs 和 Assistants API 本质是降低开发门槛

可操控性和易用性之间的权衡与折中:

  1. 更多技术路线选择:原生 API、GPTs 和 Assistants API
  2. GPTs 的示范,起到教育客户的作用,有助于打开市场
  3. 要更大自由度,需要用 Assistants API 开发
  4. 想极致调优,还得原生 API + RAG
  5. 国内大模型的 Assistants API,参考 Minimax

Assistants API 的主要能力

已有能力:

  1. 创建和管理 assistant,每个 assistant 有独立的配置
  2. 支持无限长的多轮对话,对话历史保存在 OpenAI 的服务器上
  3. 通过自有向量数据库支持基于文件的 RAG
  4. 支持 Code Interpreter
    1. 在沙箱里编写并运行 Python 代码
    2. 自我修正代码
    3. 可传文件给 Code Interpreter
  5. 支持 Function Calling
  6. 支持在线调试的 Playground

承诺未来会有的能力:

  1. 支持 DALL·E
  2. 支持图片消息
  3. 支持自定义调整 RAG 的配置项

收费:

  1. 按 token 收费。无论多轮对话,还是 RAG,所有都按实际消耗的 token 收费
  2. 如果对话历史过多超过大模型上下文窗口,会自动放弃最老的对话消息
  3. 文件按数据大小和存放时长收费。1 GB 向量存储 一天收费 0.10 美元
  4. Code interpreter 跑一次 $0.03

创建一个 Assistant

可以为每个应用,甚至应用中的每个有对话历史的使用场景,创建一个 assistant。

虽然可以用代码创建,也不复杂,例如:

from openai import OpenAI# 初始化 OpenAI 服务
client = OpenAI()# 创建助手
assistant = client.beta.assistants.create(name="小U",instructions="你叫小U,你是JAVA技术框架 UAP的助手,你负责回答用户关于UAP的问题。",model="gpt-4-turbo",
)

但是,更佳做法是,到 Playground 在线创建,因为:

  1. 更方便调整
  2. 更方便测试

样例 Assistant 的配置

Instructions:

你叫小U,你是JAVA技术框架 UAP的助手,你负责回答用户关于UAP的问题。

Functions:

{"name": "ask_database","description": "Use this function to answer user questions about course schedule. Output should be a fully formed SQL query.","parameters": {"type": "object","properties": {"query": {"type": "string","description": "SQL query extracting info to answer the user's question.\nSQL should be written using this database schema:\n\nCREATE TABLE Courses (\n\tid INT AUTO_INCREMENT PRIMARY KEY,\n\tcourse_date DATE NOT NULL,\n\tstart_time TIME NOT NULL,\n\tend_time TIME NOT NULL,\n\tcourse_name VARCHAR(255) NOT NULL,\n\tinstructor VARCHAR(255) NOT NULL\n);\n\nThe query should be returned in plain text, not in JSON.\nThe query should only contain grammars supported by SQLite."}},"required": ["query"]}
}

代码访问 Assistant

管理 thread

Threads:

  1. Threads 里保存的是对话历史,即 messages
  2. 一个 assistant 可以有多个 thread
  3. 一个 thread 可以有无限条 message
  4. 一个用户与 assistant 的多轮对话历史可以维护在一个 thread 里
import jsondef show_json(obj):"""把任意对象用排版美观的 JSON 格式打印出来"""print(json.dumps(json.loads(obj.model_dump_json()),indent=4,ensure_ascii=False))

from openai import OpenAI
import osfrom dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())# 初始化 OpenAI 服务
client = OpenAI()   # openai >= 1.3.0 起,OPENAI_API_KEY 和 OPENAI_BASE_URL 会被默认使用# 创建 thread
thread = client.beta.threads.create()
show_json(thread)
{"id": "thread_zkT0xybD8VslhJzJJNY3IHuX","created_at": 1716553797,"metadata": {},"object": "thread","tool_resources": {"code_interpreter": null,"file_search": null}
}

可以根据需要,自定义 metadata,比如创建 thread 时,把 thread 归属的用户信息存入。

thread = client.beta.threads.create(metadata={"fullname": "王卓然", "username": "taliux"}
)
show_json(thread)
{"id": "thread_1LMmbLMx2ZrRQjymDOGQGYGX","created_at": 1716553801,"metadata": {"fullname": "王卓然","username": "taliux"},"object": "thread","tool_resources": {"code_interpreter": null,"file_search": null}
}

Thread ID 如果保存下来,是可以在下次运行时继续对话的。

从 thread ID 获取 thread 对象的代码:

thread = client.beta.threads.retrieve(thread.id)
show_json(thread)
{"id": "thread_1LMmbLMx2ZrRQjymDOGQGYGX","created_at": 1716553801,"metadata": {"fullname": "王卓然","username": "taliux"},"object": "thread","tool_resources": {"code_interpreter": {"file_ids": []},"file_search": null}
}

此外,还有:

  1. threads.modify() 修改 thread 的 metadata 和 tool_resources
  2. threads.retrieve() 获取 thread
  3. threads.delete() 删除 thread。

具体文档参考:https://platform.openai.com/docs/api-reference/threads

给 Threads 添加 Messages

这里的 messages 结构要复杂一些:

  1. 不仅有文本,还可以有图片和文件
  2. 也有 metadata
message = client.beta.threads.messages.create(thread_id=thread.id,  # message 必须归属于一个 threadrole="user",          # 取值是 user 或者 assistant。但 assistant 消息会被自动加入,我们一般不需要自己构造content="你都能做什么?",
)
show_json(message)

{"id": "msg_wDZxbO2oi2rAvk9Yxgqw0hVP","assistant_id": null,"attachments": [],"completed_at": null,"content": [{"text": {"annotations": [],"value": "你都能做什么?"},"type": "text"}],"created_at": 1716553809,"incomplete_at": null,"incomplete_details": null,"metadata": {},"object": "thread.message","role": "user","run_id": null,"status": null,"thread_id": "thread_1LMmbLMx2ZrRQjymDOGQGYGX"
}

还有如下函数:

  1. threads.messages.retrieve() 获取 message
  2. threads.messages.update() 更新 message 的 metadata
  3. threads.messages.list() 列出给定 thread 下的所有 messages

具体文档参考:https://platform.openai.com/docs/api-reference/messages

也可以在创建 thread 同时初始化一个 message 列表:

thread = client.beta.threads.create(messages=[{"role": "user","content": "你好",},{"role": "assistant","content": "有什么可以帮您?",},{"role": "user","content": "你是谁?",},]
)show_json(thread)  # 显示 thread
print("-----")
show_json(client.beta.threads.messages.list(thread.id))  # 显示指定 thread 中的 message 列表
{"id": "thread_Qf32rY62YZrpW8d3nEm51mLn","created_at": 1716553813,"metadata": {},"object": "thread","tool_resources": {"code_interpreter": null,"file_search": null}
}
-----
{"data": [{"id": "msg_MkAm2f87yE3ynnLOzXCLq5XR","assistant_id": null,"attachments": [],"completed_at": null,"content": [{"text": {"annotations": [],"value": "你是谁?"},"type": "text"}],"created_at": 1716553813,"incomplete_at": null,"incomplete_details": null,"metadata": {},"object": "thread.message","role": "user","run_id": null,"status": null,"thread_id": "thread_Qf32rY62YZrpW8d3nEm51mLn"},{"id": "msg_tTgI3MS6t19pzQM7ItFJkZaA","assistant_id": null,"attachments": [],"completed_at": null,"content": [{"text": {"annotations": [],"value": "有什么可以帮您?"},"type": "text"}],"created_at": 1716553813,"incomplete_at": null,"incomplete_details": null,"metadata": {},"object": "thread.message","role": "assistant","run_id": null,"status": null,"thread_id": "thread_Qf32rY62YZrpW8d3nEm51mLn"},{"id": "msg_imlUh5ckePY0SaBmE6dDB3AY","assistant_id": null,"attachments": [],"completed_at": null,"content": [{"text": {"annotations": [],"value": "你好"},"type": "text"}],"created_at": 1716553813,"incomplete_at": null,"incomplete_details": null,"metadata": {},"object": "thread.message","role": "user","run_id": null,"status": null,"thread_id": "thread_Qf32rY62YZrpW8d3nEm51mLn"}],"object": "list","first_id": "msg_MkAm2f87yE3ynnLOzXCLq5XR","last_id": "msg_imlUh5ckePY0SaBmE6dDB3AY","has_more": false
}

开始 Run

  • 用 run 把 assistant 和 thread 关联,进行对话
  • 一个 prompt 就是一次 run

直接运行

assistant_id = "asst_pxKAiBW0VB62glWPjeRDA7mR"  # 从 Playground 中拷贝run = client.beta.threads.runs.create_and_poll(thread_id=thread.id,assistant_id=assistant_id,
)
if run.status == 'completed':messages = client.beta.threads.messages.list(thread_id=thread.id)show_json(messages)
else:print(run.status)

Run 的状态

Run 的底层是个异步调用,意味着它不等大模型处理完,就返回。我们通过 run.status 了解大模型的工作进展情况,来判断下一步该干什么。

run.status 有的状态,和状态之间的转移关系如图。

流式运行

  1. 创建回调函数
from typing_extensions import override
from openai import AssistantEventHandlerclass EventHandler(AssistantEventHandler):@overridedef on_text_created(self, text) -> None:"""响应输出创建事件"""print(f"\nassistant > ", end="", flush=True)@overridedef on_text_delta(self, delta, snapshot):"""响应输出生成的流片段"""print(delta.value, end="", flush=True)

     2. 运行 run

# 添加新一轮的 user message
message = client.beta.threads.messages.create(thread_id=thread.id,role="user",content="你说什么?",
)
# 使用 stream 接口并传入 EventHandler
with client.beta.threads.runs.stream(thread_id=thread.id,assistant_id=assistant_id,event_handler=EventHandler(),
) as stream:stream.until_done()

还有如下函数:

  1. threads.runs.list() 列出 thread 归属的 run
  2. threads.runs.retrieve() 获取 run
  3. threads.runs.update() 修改 run 的 metadata
  4. threads.runs.cancel() 取消 in_progress 状态的 run

具体文档参考:https://platform.openai.com/docs/api-reference/runs

使用 Tools

创建 Assistant 时声明 Code_Interpreter

如果用代码创建:

assistant = client.beta.assistants.create(name="Demo Assistant",instructions="你是人工智能助手。你可以通过代码回答很多数学问题。",tools=[{"type": "code_interpreter"}],model="gpt-4-turbo"
)

在回调中加入 code_interpreter 的事件响应

from typing_extensions import override
from openai import AssistantEventHandlerclass EventHandler(AssistantEventHandler):@overridedef on_text_created(self, text) -> None:"""响应输出创建事件"""print(f"\nassistant > ", end="", flush=True)@overridedef on_text_delta(self, delta, snapshot):"""响应输出生成的流片段"""print(delta.value, end="", flush=True)@overridedef on_tool_call_created(self, tool_call):"""响应工具调用"""print(f"\nassistant > {tool_call.type}\n", flush=True)@overridedef on_tool_call_delta(self, delta, snapshot):"""响应工具调用的流片段"""if delta.type == 'code_interpreter':if delta.code_interpreter.input:print(delta.code_interpreter.input, end="", flush=True)if delta.code_interpreter.outputs:print(f"\n\noutput >", flush=True)for output in delta.code_interpreter.outputs:if output.type == "logs":print(f"\n{output.logs}", flush=True)

发个 Code Interpreter 请求:

# 创建 thread
thread = client.beta.threads.create()# 添加新一轮的 user message
message = client.beta.threads.messages.create(thread_id=thread.id,role="user",content="用代码计算 1234567 的平方根",
)
# 使用 stream 接口并传入 EventHandler
with client.beta.threads.runs.stream(thread_id=thread.id,assistant_id=assistant_id,event_handler=EventHandler(),
) as stream:stream.until_done()
assistant > code_interpreterimport math# 计算 1234567 的平方根
square_root = math.sqrt(1234567)
square_rootoutput >1111.1107055554814assistant > 1234567 的平方根是约 1111.11。

Code_Interpreter 操作文件

# 上传文件到 OpenAI
file = client.files.create(file=open("mydata.csv", "rb"),purpose='assistants'
)# 创建 assistant
my_assistant = client.beta.assistants.create(name="CodeInterpreterWithFileDemo",instructions="你是数据分析师,按要求分析数据。",model="gpt-4-turbo",tools=[{"type": "code_interpreter"}],tool_resources={"code_interpreter": {"file_ids": [file.id]  # 为 code_interpreter 关联文件}}
)
# 创建 thread
thread = client.beta.threads.create()# 添加新一轮的 user message
message = client.beta.threads.messages.create(thread_id=thread.id,role="user",content="统计总销售额",
)
# 使用 stream 接口并传入 EventHandler
with client.beta.threads.runs.stream(thread_id=thread.id,assistant_id=my_assistant.id,event_handler=EventHandler(),
) as stream:stream.until_done()

关于文件操作,还有如下函数:

  1. client.files.list() 列出所有文件
  2. client.files.retrieve() 获取文件对象
  3. client.files.delete() 删除文件
  4. client.files.content() 读取文件内容

具体文档参考:https://platform.openai.com/docs/api-reference/files

创建 Assistant 时声明 Function

如果用代码创建:'''
python
assistant = client.beta.assistants.create(instructions="你叫瓜瓜。你是AGI课堂的助手。你只回答跟AI大模型有关的问题。不要跟学生闲聊。每次回答问题前,你要拆解问题并输出一步一步的思考过程。",model="gpt-4o",tools=[{"type": "function","function": {"name": "ask_database","description": "Use this function to answer user questions about course schedule. Output should be a fully formed SQL query.","parameters": {"type": "object","properties": {"query": {"type": "string","description": "SQL query extracting info to answer the user's question.\nSQL should be written using this database schema:\n\nCREATE TABLE Courses (\n\tid INT AUTO_INCREMENT PRIMARY KEY,\n\tcourse_date DATE NOT NULL,\n\tstart_time TIME NOT NULL,\n\tend_time TIME NOT NULL,\n\tcourse_name VARCHAR(255) NOT NULL,\n\tinstructor VARCHAR(255) NOT NULL\n);\n\nThe query should be returned in plain text, not in JSON.\nThe query should only contain grammars supported by SQLite."}},"required": ["query"]}}]
)
'''

 创建一个 Function

# 定义本地函数和数据库import sqlite3# 创建数据库连接
conn = sqlite3.connect(':memory:')
cursor = conn.cursor()# 创建orders表
cursor.execute("""
CREATE TABLE Courses (id INT AUTO_INCREMENT PRIMARY KEY,course_date DATE NOT NULL,start_time TIME NOT NULL,end_time TIME NOT NULL,course_name VARCHAR(255) NOT NULL,instructor VARCHAR(255) NOT NULL
);
""")# 插入5条明确的模拟记录
timetable = [('2024-01-23', '20:00', '22:00', 'aaaaa', '张三'),('2024-01-25', '20:00', '22:00', 'bbbbbbbb', '张三'),('2024-01-29', '20:00', '22:00', 'ccccc', '张三'),('2024-02-20', '20:00', '22:00', 'dddddd', '张三'),('2024-02-22', '20:00', '22:00', 'eeeeeee', '李四'),]for record in timetable:cursor.execute('''INSERT INTO Courses (course_date, start_time, end_time, course_name, instructor)VALUES (?, ?, ?, ?, ?)''', record)# 提交事务
conn.commit()def ask_database(query):cursor.execute(query)records = cursor.fetchall()return str(records)# 可以被回调的函数放入此字典
available_functions = {"ask_database": ask_database,
}

增加回调事件的响应

from typing_extensions import override
from openai import AssistantEventHandlerclass EventHandler(AssistantEventHandler):@overridedef on_text_created(self, text) -> None:"""响应回复创建事件"""print(f"\nassistant > ", end="", flush=True)@overridedef on_text_delta(self, delta, snapshot):"""响应输出生成的流片段"""print(delta.value, end="", flush=True)@overridedef on_tool_call_created(self, tool_call):"""响应工具调用"""print(f"\nassistant > {tool_call.type}\n", flush=True)@overridedef on_tool_call_delta(self, delta, snapshot):"""响应工具调用的流片段"""if delta.type == 'code_interpreter':if delta.code_interpreter.input:print(delta.code_interpreter.input, end="", flush=True)if delta.code_interpreter.outputs:print(f"\n\noutput >", flush=True)for output in delta.code_interpreter.outputs:if output.type == "logs":print(f"\n{output.logs}", flush=True)@overridedef on_event(self, event):"""响应 'requires_action' 事件"""if event.event == 'thread.run.requires_action':run_id = event.data.id  # 获取 run IDself.handle_requires_action(event.data, run_id)def handle_requires_action(self, data, run_id):tool_outputs = []for tool in data.required_action.submit_tool_outputs.tool_calls:arguments = json.loads(tool.function.arguments)print(f"{tool.function.name}({arguments})",flush=True)# 运行 functiontool_outputs.append({"tool_call_id": tool.id,"output": available_functions[tool.function.name](**arguments)})# 提交 function 的结果,并继续运行 runself.submit_tool_outputs(tool_outputs, run_id)def submit_tool_outputs(self, tool_outputs, run_id):"""提交function结果,并继续流"""with client.beta.threads.runs.submit_tool_outputs_stream(thread_id=self.current_run.thread_id,run_id=self.current_run.id,tool_outputs=tool_outputs,event_handler=EventHandler(),) as stream:stream.until_done()

# 创建 thread
thread = client.beta.threads.create()# 添加 user message
message = client.beta.threads.messages.create(thread_id=thread.id,role="user",content="平均一堂课多长时间",
)
# 使用 stream 接口并传入 EventHandler
with client.beta.threads.runs.stream(thread_id=thread.id,assistant_id=assistant_id,event_handler=EventHandler(),
) as stream:stream.until_done()

两个无依赖的 function 会在一次请求中一起被调用

# 创建 thread
thread = client.beta.threads.create()# 添加 user message
message = client.beta.threads.messages.create(thread_id=thread.id,role="user",content="张三上几堂课,比李四多上几堂",
)
# 使用 stream 接口并传入 EventHandler
with client.beta.threads.runs.stream(thread_id=thread.id,assistant_id=assistant_id,event_handler=EventHandler(),
) as stream:stream.until_done()
assistant > functionassistant > functionask_database({'query': "SELECT COUNT(*) AS count FROM Courses WHERE instructor = '张三';"})
ask_database({'query': "SELECT COUNT(*) AS count FROM Courses WHERE instructor = '李四';"})assistant > 张三上了4堂课,而李四上了1堂课。因此,张三比李四多上了3堂课。

更多流中的 Event: https://platform.openai.com/docs/api-reference/assistants-streaming/events 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/33801.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

6.二叉树.题目1

6.二叉树.题目 题目1.翻转二叉树2.对称二叉树3.二叉树的最大深度4.二叉树的最小深度5.完全二叉树的节点个数6.平衡二叉树7.二叉树的所有路径8.左叶子之和 总结 题目 1.翻转二叉树 (题目链接) 直观的思路是就把每一个节点的左右孩子交换一下就可以了, 深度优先-递归…

stm32学习笔记---TIM输出比较(理论部分)

目录 TIM简介 定时器类型 基本定时器的结构图 时基单元 预分频器 计数器 自动重装寄存器 主模式触发DAC的功能 通用定时器的结构图 计数器的计数模式 内外时钟源选择和主从触发模式的结构 外部时钟模式2 外部时钟模式1 其他部分 输出比较电路 输入捕获电路 高…

深度测试中的隐藏面消除技术

by STANCH 标签:#计算机图形学 #深度测试 #深度测试 #隐藏面消除 1.概述 根据我们的日常经验,近处的物体会挡住后面的物体,在三维场景中通常通过深度缓冲来实现这样的效果。深度缓冲记录着屏幕对应的每个像素的深度值。模型一开始所在的局部…

我对ChatGPT-5的期待

在科技飞速发展的今天,人工智能(AI)已经成为我们生活中不可或缺的一部分。尤其是近年来,随着ChatGPT等先进AI模型的推出,我们见证了AI技术在智能水平上的巨大飞跃。作为这一领域的最新成果,GPT-5的即将发布…

2005年下半年软件设计师【上午题】试题及答案

文章目录 2005年下半年软件设计师上午题--试题2005年下半年软件设计师上午题--答案 2005年下半年软件设计师上午题–试题 2005年下半年软件设计师上午题–答案

解决ssh: connect to host IP port 22: Connection timed out报错(scp传文件指定端口)

错误消息 ssh: connect to host IP port 22: Connection timed out 指出 SSH 客户端尝试连接到指定的 IP 地址和端口号(默认 SSH 端口是 22),但是连接超时了。这意味着客户端没有在预定时间内收到来自服务器的响应。 可能的原因 SSH 服务未…

C语言---C指针+ASCII码

内存地址:内存中每个字节单位都有一个编号(一般用十六进制表示) 存储类型 数据类型 *指针变量名;int *p; //定义了一个指针变量p,指向的数据是int类型的。访问指针所指向空间的内容用取内容运算符* &:取地址符&am…

LeetCode —— 只出现一次的数字

只出现一次的数字 I 本题依靠异或运算符的特性&#xff0c;两个相同数据异或等于0&#xff0c;数字与0异或为本身即可解答。代码如下: class Solution { public:int singleNumber(vector<int>& nums) {int ret 0;for (auto e : nums){ret ^ e;}return ret;} };只出…

数据模型(models)

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 &#xff08;1&#xff09;在App中添加数据模型 在app1的models.py中添加如下代码&#xff1a; from django.db import models # 引入django.…

Qt开发 | Qt界面布局 | 水平布局 | 竖直布局 | 栅格布局 | 分裂器布局 | setLayout使用 | 添加右键菜单 | 布局切换与布局删除重构

文章目录 一、Qt界面布局二、Qt水平布局--QHBoxLayout三、Qt竖直布局四、Qt栅格布局五、分裂器布局代码实现六、setLayout使用说明七、布局切换与布局删除重构1.如何添加右键菜单2.布局切换与布局删除重构 一、Qt界面布局 Qt的界面布局类型可分为如下几种 水平布局&#xff08;…

谐波减速器行业发展速度有望加快 工业机器人领域为其最大需求端

谐波减速器行业发展速度有望加快 工业机器人领域为其最大需求端 谐波减速器指通过增大转矩、降低转速等方式实现减速目的的精密传动装置。谐波减速器具有轻量化、体积小、承载能力大、精度高、可靠性高、运行噪音小等优势&#xff0c;广泛应用于工业机器人、半导体制造、精密医…

AWS中国云配置强制MFA策略后导致AWS CLI和IDEA中无法使用问题

问题 之前的文章《AWS中国IAM用户强制使用MFA》&#xff0c;启用必须使用MFA策略才能使用AWS服务。但是&#xff0c;开启之后&#xff0c;遇到了本地开发环境的IDEA和AWS CLI不能正常调用ssm的配置中心问题。 解决思路 在本地配置文件中&#xff0c;配置使用能够正常使用ssm…

web开发前后端分离

文章目录 1.广义上的前后端分离 1.广义上的前后端分离 优点&#xff1a; 1.前后端分离&#xff0c;便于后期维护;2.前端服务器只需要返回静态界面&#xff0c;后端服务器只提供增删查改的数据返回&#xff0c;把数据的转换逻辑的处理压力转移到了客户端;

MySQL 8版本的新功能和改进有哪些?(MySQL收藏版)

目录 1. 简单介绍 2. 发展历史 3. MySQL 8产品特性 4. 数据库性能重点分析 1. 原生 JSON 支持改进 2. 隐式列优化 3. 改进的查询优化器 4. 并行查询 5. 分区表改进 MySQL 是一个流行的开源关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;由瑞典公司 M…

了解SD-WAN与传统WAN的区别

近年来&#xff0c;许多企业选择了SD-WAN作为他们的网络解决方案。云基础架构的SD-WAN不仅具备成本效益&#xff0c;而且提供更安全、更可靠的WAN连接&#xff0c;有助于实现持续盈利。客户能够更好地控制他们的网络&#xff0c;个性化定制且无需额外成本。 那么&#xff0c;为…

服务器数据恢复—raid故障导致部分分区无法识别/不可用的数据恢复案例

服务器数据恢复环境&#xff1a; 一台某品牌DL380服务器中3块SAS硬盘组建了一组raid。 服务器故障&#xff1a; RAID中多块磁盘出现故障离线导致RAID瘫痪&#xff0c;其中一块硬盘状态指示灯显示红色。服务器上运行的数据库在D分区&#xff0c;备份文件存放在E分区。由于RAID瘫…

[信号与系统]模拟域中的一阶低通滤波器和二阶滤波器

前言 不是学电子出身的&#xff0c;这里很多东西是问了朋友… 模拟域中的一阶低通滤波器传递函数 模拟域中的一阶低通滤波器的传递函数可以表示为&#xff1a; H ( s ) 1 s ω c H(s) \frac{1}{s \omega_c} H(s)sωc​1​ 这是因为一阶低通滤波器的设计目标是允许低频信…

05-java基础——循环习题

循环的选择&#xff1a;知道循环的次数或者知道循环的范围就使用for循环&#xff0c;其次再使用while循环 猜数字 程序自动生成一个1-100之间的随机数&#xff0c;在代码中使用键盘录入去猜出这个数字是多少&#xff1f; 要求&#xff1a;使用循环猜&#xff0c;一直猜中为止…

时序预测 | Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测&#xff1b; 2.多变量时间序列数据集&#xff08;负荷数据集&#xff09;&#xff0c;采用前96个时刻预测的特征和负荷数据预测未来96个时刻的负荷数据&…

品牌为什么需要3D营销?

在对比传统品牌营销手段时&#xff0c;线上3D互动营销以其更为生动的展示效果脱颖而出。它通过构建虚拟仿真场景&#xff0c;创造出一个身临其境的三维空间&#xff0c;充分满足了客户对实体质感空间的期待。不仅如此&#xff0c;线上3D互动营销还能实现全天候24小时无间断服务…