动手学深度学习(Pytorch版)代码实践 -卷积神经网络-30Kaggle竞赛:图片分类

30Kaggle竞赛:图片分类

比赛链接: https://www.kaggle.com/c/classify-leaves

导入包
import torch
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import numpy as np
import pandas as pd
from torch import nn
import matplotlib.pyplot as plt
from PIL import Image
import os
from torch.nn import functional as F
import torch.optim as optim
import liliPytorch as lp
import torchvision.models as models
预处理:数据集分析
train_path = '../data/classify-leaves/train.csv'
test_path = '../data/classify-leaves/test.csv'
file_path = '../data/classify-leaves/'# # 读取训练和测试数据
train_data = pd.read_csv(train_path)
test_data = pd.read_csv(test_path)# 打印数据形状
print(train_data.shape) # (18353, 2)
print(test_data.shape) # (8800, 1)#生成描述性统计数据
print(train_data.describe())
"""image             label
count          18353             18353
unique         18353               176
top     images/0.jpg  maclura_pomifera
freq               1               353
"""# 查看不同树叶的数量
print(train_data['label'].value_counts())
"""
label
maclura_pomifera            353
ulmus_rubra                 235
prunus_virginiana           223
acer_rubrum                 217
broussonettia_papyrifera    214... 
cedrus_deodara               58
ailanthus_altissima          58
crataegus_crus-galli         54
evodia_daniellii             53
juniperus_virginiana         51
Name: count, Length: 176, dtype: int64
"""
1.数据处理与加载
train_path = '../data/classify-leaves/train.csv'
test_path = '../data/classify-leaves/test.csv'
file_path = '../data/classify-leaves/'# 树叶的名字统计
labels_unique = train_data['label'].unique()
# print(labels_unique)# 树叶标签的数量
labels_num = len(labels_unique)# 提取出树叶标签,并排序
leaves_labels = sorted(list(set(train_data['label'])))
# print(leaves_labels)# 将树叶标签对应数字
labels_to_num = dict(zip(leaves_labels, range(labels_num )))
# print(labels_to_num)# 将数字对应树叶标签(用于后续预测)
num_to_labels = {value : key for key, value in labels_to_num.items()}
# print(num_to_labels)class LeavesDataset(Dataset):def __init__(self, csv_path, file_path, mode='train', valid_ratio=0.2, resize_height=224, resize_width=224):"""初始化 LeavesDataset 对象。参数:csv_path (str): 包含图像路径和标签的 CSV 文件路径。file_path (str): 图像文件所在目录的路径。mode (str, optional): 数据集的模式。可以是 'train', 'valid' 或 'test'。默认值为 'train'。valid_ratio (float, optional): 用于验证的数据比例。默认值为 0.2。resize_height (int, optional): 调整图像高度的大小。默认值为 224。resize_width (int, optional): 调整图像宽度的大小。默认值为 224。"""# 存储图像调整大小的高度和宽度self.resize_height = resize_heightself.resize_width = resize_width# 存储图像文件路径和模式(train/valid/test)self.file_path = file_pathself.mode = mode# 读取包含图像路径和标签的 CSV 文件self.data_info = pd.read_csv(csv_path, header=0)# 获取样本总数self.data_len = len(self.data_info.index)# 计算训练集样本数self.train_len = int(self.data_len * (1 - valid_ratio))# 根据模式处理数据if self.mode == 'train':# 训练模式下的图像和标签self.train_img = np.asarray(self.data_info.iloc[0:self.train_len, 0])self.train_label = np.asarray(self.data_info.iloc[0:self.train_len, 1])self.image_arr = self.train_imgself.label_arr = self.train_labelelif self.mode == 'valid':# 验证模式下的图像和标签self.valid_img = np.asarray(self.data_info.iloc[self.train_len:, 0])self.valid_label = np.asarray(self.data_info.iloc[self.train_len:, 1])self.image_arr = self.valid_imgself.label_arr = self.valid_labelelif self.mode == 'test':# 测试模式下的图像self.test_img = np.asarray(self.data_info.iloc[:, 0])self.image_arr = self.test_img# 获取图像数组的长度self.len_image = len(self.image_arr)print(f'扫描所有 {mode} 数据,共 {self.len_image} 张图像')def __getitem__(self, idx):"""获取指定索引的图像和标签。参数: idx (int): 标签文本对应编号的索引返回:如果是测试模式,返回图像张量;否则返回图像张量和标签。"""# 打开图像文件self.img = Image.open(self.file_path + self.image_arr[idx])if self.mode == 'train':# 训练模式下的数据增强trans = transforms.Compose([transforms.Resize((self.resize_height, self.resize_width)),transforms.RandomHorizontalFlip(p=0.5),transforms.RandomVerticalFlip(p=0.5),transforms.RandomRotation(degrees=30),# transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# transforms.RandomResizedCrop(size=self.resize_height, scale=(0.8, 1.0)),transforms.ToTensor(),# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])self.img = trans(self.img)else:# 验证和测试模式下的简单处理trans = transforms.Compose([transforms.Resize((self.resize_height, self.resize_width)),transforms.ToTensor(),# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])self.img = trans(self.img)if self.mode == 'test':return self.imgelse:# 获取标签文本对应的编号self.label = labels_to_num[self.label_arr[idx]]return self.img, self.labeldef __call__(self, idx):"""使对象可以像函数一样被调用。参数:idx (int):标签文本对应编号的索引 返回: 调用 __getitem__ 方法并返回结果。"""return self.__getitem__(idx)def __len__(self):"""获取数据集的长度。返回: 数据集中图像的数量。"""return self.len_imagetrain_dataset = LeavesDataset(train_path, file_path)
valid_dataset = LeavesDataset(train_path, file_path, mode='valid')
test_dataset = LeavesDataset(test_path, file_path, mode='test')
2.模型构建Resnet
class Residual(nn.Module):def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)b1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)def resnet_block(input_channels, num_channels, num_residuals, first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blk#ResNet34
# b2 = nn.Sequential(*resnet_block(64, 64, 3, first_block=True))
# b3 = nn.Sequential(*resnet_block(64, 128, 4))
# b4 = nn.Sequential(*resnet_block(128, 256, 6))
# b5 = nn.Sequential(*resnet_block(256, 512, 3))#ResNet18
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1, 1)),nn.Flatten(),nn.Linear(512, labels_num)
)
3.模型训练
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):"""用GPU训练模型参数:net (torch.nn.Module): 要训练的神经网络模型train_iter (torch.utils.data.DataLoader): 训练数据加载器test_iter (torch.utils.data.DataLoader): 测试数据加载器num_epochs (int): 训练的轮数lr (float): 学习率device (torch.device): 计算设备(CPU或GPU)"""# 初始化模型权重def init_weights(m):if(type(m) == nn.Linear or type(m) == nn.Conv2d):nn.init.xavier_uniform_(m.weight)net.apply(init_weights)print('training on', device)net.to(device)# 应用初始化权重函数# optimizer = torch.optim.SGD(net.parameters(), lr = lr)optimizer = torch.optim.Adam(net.parameters(), lr=lr, weight_decay = 0.001)# 每5个epoch学习率减少到原来的0.1倍# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)  loss = nn.CrossEntropyLoss()   # 损失函数,使用交叉熵损失animator = lp.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])timer, num_batches = lp.Timer(), len(train_iter)for epoch in range(num_epochs):# 训练损失之和,训练准确率之和,样本数metric = lp.Accumulator(3)net.train() #训练模式for i, (X, y) in enumerate(train_iter):timer.start()optimizer.zero_grad() # 梯度清零X, y = X.to(device), y.to(device)y_hat = net(X)# 前向传播l = loss(y_hat, y) # 计算损失l.backward()# 反向传播optimizer.step() # 更新参数with torch.no_grad():metric.add(l * X.shape[0], lp.accuracy(y_hat, y), X.shape[0]) # 更新指标timer.stop()train_l = metric[0] / metric[2] # 计算训练损失train_acc = metric[1] / metric[2] # 计算训练准确率# 每训练完一个批次或每5个批次更新动画if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(train_l, train_acc, None))# 在验证集上计算准确率test_acc = lp.evaluate_accuracy_gpu(net, test_iter, device)animator.add(epoch + 1, (None, None, test_acc))# 打印当前epoch的训练损失,训练准确率和测试准确率print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, 'f'test acc {test_acc:.3f}')# scheduler.step()animator.show()print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, 'f'test acc {test_acc:.3f}')print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec 'f'on {str(device)}')# 打印每秒处理的样本数# 超参数设置
lr, num_epochs, batch_size = 1e-5, 120, 128# 数据加载器
train_iter = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
valid_iter = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False, num_workers=4)train_ch6(net, train_iter, valid_iter, num_epochs, lr, lp.try_gpu())
plt.show()# 保存模型参数
file_path_module = '../limuPytorch/module/'
torch.save(net.state_dict(), file_path_module + 'classify_leaves.params')
4.训练调参
resNet-18,num_epochs = 10,lr=1e-4,
loss 2.239, train acc 0.429, test acc 0.149
444.5 examples/sec on cuda:0resNet-34, num_epochs = 10,lr=1e-4
loss 1.991, train acc 0.443, test acc 0.147
270.7 examples/sec on cuda:0resNet-34,num_epochs = 50,lr=1e-4,train数据增强,使用Adam
loss 0.281, train acc 0.914, test acc 0.378
244.6 examples/sec on cuda:0resNet-34,num_epochs = 50,lr=1e-5,train数据增强,使用Adam
loss 0.189, train acc 0.925, test acc 0.398
258.0 examples/sec on cuda:0resNet-18,num_epochs = 50,lr=1e-4,train数据增强,使用Adam
loss 0.199, train acc 0.955, test acc 0.338
458.0 examples/sec on cuda:0resNet-18,num_epochs = 50,lr=1e-4,train数据增强,调整数据集比例82
数据增强过度导致测试准确率(test accuracy)曲线上下震荡resNet-18,num_epochs = 50,lr=1e-4,train数据增强,调整数据集比例为82
数据增强过度导致测试准确率(test accuracy)曲线上下震荡resNet-18,num_epochs = 50,lr=1e-4,train数据增强(仅旋转),调整数据集比例为82
loss 0.129, train acc 0.966, test acc 0.838
350.7 examples/sec on cuda:0resNet-18,num_epochs = 50,lr=1e-5,train数据增强,调整数据集比例为82
loss 0.808, train acc 0.788, test acc 0.701
420.6 examples/sec on cuda:0resNet-18,num_epochs = 100,lr=1e-5,train数据增强,调整数据集比例为82
loss 0.285, train acc 0.927, test acc 0.825
409.2 examples/sec on cuda:0
5.模型预测
 def predict(model, data_loader, device):"""使用模型进行预测参数:model (torch.nn.Module): 要进行预测的模型data_loader (torch.utils.data.DataLoader): 数据加载器,用于提供待预测的数据device (torch.device): 计算设备(CPU或GPU)返回: all_preds (list): 包含所有预测结果的列表"""all_preds = []  # 存储所有预测结果model.to(device)  # 将模型移动到指定设备model.eval()  # 设置模型为评估模式with torch.no_grad():  # 在不需要计算梯度的上下文中进行for X in data_loader:  # 遍历数据加载器X = X.to(device)  # 将数据移动到指定设备outputs = model(X)  # 前向传播,计算模型输出_, preds = torch.max(outputs, 1)  # 获取预测结果all_preds.extend(preds.cpu().numpy())  # 将预测结果添加到列表中return all_preds  # 返回所有预测结果# 克隆模型clone_net = net# 加载预训练模型参数clone_net.load_state_dict(torch.load(file_path_module + 'classify_leaves.params'))# 创建验证集的数据加载器valid_iter = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=2)# 进行预测predictions = predict(clone_net, valid_iter, lp.try_gpu())# 将预测结果映射到标签for i in predictions:predictions.append(num_to_labels[int(i)])# 读取测试数据test_data = pd.read_csv(test_path)# 将预测结果添加到测试数据中test_data['label'] = pd.Series(predictions)# 创建提交文件submission = pd.concat([test_data['image'], test_data['label']], axis=2)# 保存提交文件submission.to_csv(file_path + 'submission.csv', index=False)
7.扩展学习
# 模型构建
# 加载预训练的ResNet-18模型
#加载一个预训练的ResNet-18模型,这个模型已经在ImageNet数据集上进行了预训练。
#可以利用其提取特征的能力。
pretrained_net = models.resnet18(pretrained=True)# 克隆预训练的ResNet-18模型,用于分类叶子数据集
classify_leaves_net = pretrained_net# 修改最后的全连接层,将其输出特征数改为176(有176个类别)
# classify_leaves_net.fc.in_features 获取原始全连接层的输入特征数。
classify_leaves_net.fc = nn.Linear(classify_leaves_net.fc.in_features, 176)# 使用Xavier均匀分布初始化新的全连接层的权重
nn.init.xavier_uniform_(classify_leaves_net.fc.weight)# 模型训练部分更改优化器
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device,param_group=True):"""param_group (bool, optional): 是否对参数进行分组设置不同的学习率。默认值为True"""# optimizer = torch.optim.SGD(net.parameters(), lr = lr)# optimizer = torch.optim.Adam(net.parameters(), lr=lr, weight_decay = 0.001)if param_group:# 如果参数分组设置为True,分离出最后一层全连接层的参数# 列表params_1x,包含除最后一层全连接层外的所有参数。params_1x = [param for name, param in net.named_parameters()if name not in ["fc.weight", "fc.bias"]]optimizer = torch.optim.Adam([{'params': params_1x},  # 其他层的参数使用默认学习率{'params': net.fc.parameters(), 'lr': lr * 10}  # 全连接层的参数使用更高的学习率], lr=lr, weight_decay=0.001)else:# 如果参数分组设置为False,所有参数使用相同的学习率optimizer = torch.optim.Adam(net.parameters(), lr=lr, weight_decay=0.001)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/33404.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【消息队列】六万字长文详细带你RabbitMQ从入门到精通

目录 1、基础篇1.1 为什么要用消息队列MQ1.2 什么是消息队列?1.3 RabbitMQ体系结构介绍1.4 RabbitMQ安装1.5 Hello World1.5.1 目标1.5.2 具体操作 1.6 RabbitMQ用法1.6.1 Work Queues1.6.2 Publish/Subscribe1.6.3 Routing1.6.4 Topics1.6.5 工作模式小结 2. 进阶篇…

推荐三款必备软件,个个五星好评,你一定不要错过

WiseCare365 WiseCare365是一款由WiseCleaner推出的综合性Windows系统优化和加速工具。它集成了多种功能,旨在帮助用户清理、优化和维护电脑系统,提升电脑性能和安全性。 WiseCare365的主要功能包括: 系统清理:它可以清理各种缓存…

Java.io包:从基础到高级的全面指南

Java.io包是Java编程语言中用于处理输入和输出的核心库之一。它提供了一系列类和接口,用于与文件、流、输入输出等进行交互。Java.io的设计目的是为了提供一个简单且一致的API,使得开发者能够轻松地处理各种输入输出操作,无论是文件读写、网络…

CSC公派|哲学老师赴英国红砖大学访学交流

T老师申报CSC公派访问学者,要求世界排名Top200的英国大学。我们在一个月内先后获得了利物浦大学和兰卡斯特大学的邀请函,这两所高校均位列Top200。最终T老师选择英国红砖高校之一的利物浦大学并申报成功顺利出国。 T老师背景: 申请类型&…

AutoTokenizer.from_pretrained报错TypeError: expected string or bytes-like object

问题 tokenizer AutoTokenizer.from_pretrained(distilbert-base-uncased)在用HuggingFace的Transformers加载分词器的时候报错,代码如下: > load tokenizer model distilbert Traceback (most recent call last):File "E:\PythonProjects\Sentiment_Ana…

Vue父组件mounted执行完后再执行子组件mounted

// 创建地图实例 this.map new BMap.Map(‘map’) } } ... 现在这样可能会报错,因为父组件中的 map 还没创建成功。必须确保父组件的 map 创建完成,才能使用 this.$parent.map 的方法。 那么,现在的问题是:如何保证父组件 mo…

端到端的全人体关键点检测:手把手实现从YOLOPose到YOLOWhole

目录 一、搭建yolopose平台二、迁移训练任务2.1 任务拓展数据准备训练模型测试训练模型结论To-do list: 1、数据集,COCO-whole, Halpe;下载好; 2、模型搭建,先基于yolov8来检测人体姿态,17个点; 3、迁移任务,17个点,把它拓展到133个点; 4、优化133个点的模型; 一、搭…

深入理解RLHF技术

在《LLM对齐“3H原则”》这篇文章中,我们介绍了LLM与人类对齐的“3H”原则,但是这些对齐标准主要是基于人类认知进行设计的,具有一定的主观性。因此,直接通过优化目标来建模这些对齐标准较为困难。本文将介绍基于人类反馈的强化学…

ONLYOFFICE 8.1:全面升级,PDF编辑与本地化加强版

目录 📘 前言 📟 一、什么是 ONLYOFFICE 桌面编辑器? 📟 二、ONLYOFFICE 8.1版本新增了那些特别的实用模块? 2.1. 轻松编辑器 PDF 文件 2.2. 用幻灯片版式快速修改幻灯片 2.3. 无缝切换文档编辑、审阅和查…

RS-485和RS-422通信的3.3V低功耗收发器MAX3483

描述 国产MAX3485外观和丝印 该MAX3483ESA为15kV ESD保护、3.3V、低功耗收发器,用于RS-485和RS-422通信。 每个设备包含一个驱动器和一个接收器。 该MAX3483ESA具有压摆率限制驱动器,可最大限度地降低 EMI 并减少因端接不当电缆引起的反射,从…

system verilog 学习1

1 数据类型 sv 引进了一些新的数据类型,它们具有以下优点 (1)双状态数据类型:更好的性能,更低的内存消耗 (2)队列、动态和关联数组:减少内存消耗,自带搜索和分类功能 &a…

C# 使用Vector256写了一个简单的帮助类Vector256Helper

当数据量大的时候用普通代码计算非常耗时&#xff0c;这里简单利用simd加速处理 internal unsafe class Vector256Helper{/// <summary>/// 统计元素个数/// </summary>/// <param name"array"></param>/// <param name"elementToCo…

板凳--------57.Linux/Unix 系统编程手册(下) -- SOCKET : Unix domain

https://blog.51cto.com/u_15567199/5204540 【linux网络编程】容错处理文件 wrap.h、wrap.c_wx623c6c9. // 容错处理 wrap.h #ifndef _WRAP_H_ #define _WRAP_H_#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <error.h> #i…

【BSCP系列第2期】XSS攻击的深度剖析和利用(文末送书)

文章目录 前言一、官方地址二、开始&#xff08;15个&#xff09;1&#xff1a;Lab: DOM XSS in document.write sink using source location.search inside a select element2&#xff1a;Lab: DOM XSS in AngularJS expression with angle brackets and double quotes HTML-e…

北邮《计算机网络》MAC子层笔记

文章目录 缩写复习MAC层所在层次动态分配信道算法们的简要介绍信道的五条基本假设多路访问的协议&#xff08;理论上的协议&#xff09;aloha协议CSMA协议其他冲突避免协议无线局域网协议 &#xff0c;MACA 以太网协议802.3&#xff08;实际协议&#xff0c;刚刚是理论&#xf…

小白学python(第一天)

在有了C语言的基础后&#xff0c;我们学python会变得相当容易&#xff0c;毕竟c生万物&#xff0c;废话不多说&#xff0c;直接进入我们的正题 课前准备 Python环境的搭建以及Pycharm的安装 python环境安装 Download Python | Python.org 因为我的电脑是windows&#xff0c;…

C++精解【6】

文章目录 eigenMatrix基础例编译时固定尺寸运行指定大小 OpenCV概述 eigen Matrix 基础 所有矩阵和向量都是Matrix模板类的对象。向量也是矩阵&#xff0c;单行或单列。Matrix模板类6个参数&#xff0c;常用就3个参数&#xff0c;其它3个参数有默认值。 Matrix<typename…

使用鸿蒙HarmonyOs NEXT 开发 快速开发 简单的购物车页面

目录 资源准备&#xff1a;需要准备三张照片&#xff1a;商品图、向下图标、金钱图标 1.显示效果&#xff1a; 2.源码&#xff1a; 资源准备&#xff1a;需要准备三张照片&#xff1a;商品图、向下图标、金钱图标 1.显示效果&#xff1a; 定义了一个购物车页面的布局&#x…

6. Revit API UI: PreviewControl(预览控件)

6. Revit API UI: PreviewControl&#xff08;预览&#xff09; PreviewControl 有时我们需要一个预览功能&#xff0c;而Revit也提供了一个PreviewControl类来帮助我们实现这个功能。 从类的继承关系来看&#xff0c;PreviewControl就是一个用户自定义控件&#xff0c;它就…