使用Python进行数据分析和自动化

组织严重依赖数据分析和自动化来提高运营效率。在本文中,我们将使用 Python(一种用于通用编程的高级编程语言)的示例来研究数据分析和自动化的基础知识。

什么是数据分析?

数据分析是指检查、清理、转换和建模数据的过程,以便识别有用的信息、得出结论并支持决策。这是一项重要的活动,有助于将原始数据转化为可操作的见解。以下是数据分析涉及的关键步骤:

  1. 收集:从不同来源收集数据。
  2. 清理:删除或纠正收集的数据集中的不准确和不一致性。
  3. 转换:将收集的数据集转换为适合进一步分析的格式。
  4. 建模:在转换后的数据集上应用统计或机器学习模型。
  5. 可视化:使用合适的工具(例如 MS Excel 或 Python 的 matplotlib 库)创建图表、图形等,以直观的方式呈现调查结果。

数据自动化的重要性

数据自动化涉及使用技术来执行与处理大​型数据集相关的重复性任务,并且只需极少的人工干预。自动化这些流程可以大大提高效率,从而为分析师节省时间,让他们可以更专注于复杂的任务。它的一些常见应用领域包括:

  • 数据提取:自动从各种来源收集和存储数据。
  • 数据清理和转换:在对收集的数据集执行建模或可视化等其他操作之前,使用脚本或工具(例如 Python Pandas 库)对其进行预处理。
  • 报告生成:创建自动报告或仪表板,每当新记录到达我们的系统等时,它们就会自行更新。
  • 数据集成: 将从多个来源获得的信息结合起来,以便在决策过程中进一步分析时获得整体视图。

Python 数据分析简介

Python是一种广泛用于数据分析的编程语言,因为它简单易读,并且有大量可用于统计计算的库。以下是一些简单示例,演示了如何使用 Python 读取大型数据集以及执行基本分析:

读取大型数据集

将数据集读入您的环境是任何数据分析项目的初始阶段之一。在这种情况下,我们将需要提供强大数据操作和分析工具的 Pandas 库。

Python

将pandas 导入为 pdbr
br
# 定义大数据集的文件路径br
file_path = '路径/到/large_dataset.csv'br
br
# 指定块大小(每个块的行数)br
块大小= 100000br
br
# 初始化一个空列表来存储结果br
结果= []br
br
# 分块迭代数据集br
对于 pd中的块.read_csv (file_path ,chunksize = chunk_size ): br
# 对每个块进行基本分析br
# 示例:计算特定列的平均值br
chunk_mean = chunk [ 'column_name' ]. mean ()br
结果.append ( chunk_mean )br
br
# 从每个块的结果计算总体平均值br
总体平均值=总和(结果)/ 长度(结果)br
打印(f'column_name 的总体平均值:{overall_mean}')br

基础数据分析

加载数据后,重要的是对其进行一些初步检查,以熟悉其内容。

执行聚合分析

有时您可能希望对整个数据集执行更高级的聚合分析。例如,假设我们想通过分块处理来查找整个数据集中某一列的总和。

Python

# 初始化一个变量来存储累计和br
累计总和= 0br
br
# 分块迭代数据集br
对于 pd中的块.read_csv (file_path ,chunksize = chunk_size ): br
# 计算当前块的特定列的总和br
chunk_sum = chunk [ 'column_name' ]. sum ()br
累积总和+=块总和br
br
打印(f'column_name 的累计总和:{cumulative_sum}')

分块处理缺失值

在数据预处理过程中,缺失值很常见。这里是使用每个块的平均值填充缺失值的一个例子。

Python

# 初始化一个空的 DataFrame 来存储处理后的块br
已处理的数据块= []br
br
# 分块迭代数据集br
对于 pd中的块.read_csv (file_path ,chunksize = chunk_size ): br
# 使用块的平均值填充缺失值br
chunk . fillna ( chunk . mean (), inplace = True )br
processing_chunks.append ( chunk )br
br
# 将所有处理过的块连接成一个 DataFramebr
处理后的数据= pd.concat (处理后的块,轴= 0 )br
打印(processed_data.head())

区块的最终统计数据

有时,需要从所有块中获取总体统计数据。此示例说明如何通过聚合每个块的结果来计算整个列的平均值和标准差。

Python

将numpy 导入为 npbr
br
# 初始化变量来存储累计总和和计数br
累计总和= 0br
累计计数= 0br
平方和= 0br
br
br
# 分块迭代数据集br
对于 pd中的块.read_csv (file_path ,chunksize = chunk_size ): br
# 计算当前块的总和和计数br
chunk_sum = chunk [ 'column_name' ]. sum ()br
chunk_count = chunk [ 'column_name' ]. count ()br
chunk_squared_sum = ( chunk [ 'column_name' ] **  2 ).sum ()复制代码br
br
累积总和+=块总和br
累积计数+=块计数br
squared_sum += chunk_squared_sumbr
br
# 计算平均值和标准差br
总体平均值=累积总和 / 累积计数br
总体标准差= np.sqrt ( (平方和/累计计数) - (总体平均值** 2 ))    br
打印(f'column_name 的总体平均值:{overall_mean}')br
print ( f'column_name 的总体标准差:{overall_std}' )

结论

使用 Python 分块读取大型数据集有助于高效地处理和分析数据,而不会占用过多的系统内存。通过利用 Pandas 的分块功能,可以在大型数据集上完成涉及数据分析的各种任务,同时确保可扩展性和效率。提供的示例说明了如何分部分读取大型数据集、解决缺失值以及执行聚合分析;从而为使用 Python 处理大量数据奠定了坚实的基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/33289.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FydeOS导入VMware虚拟机之后,如何扩展系统硬盘大小?

前言​ 最近查询FydeOS系统的小伙伴不在少数啊!可见这个系统是相当nice的,小伙伴们都是尝试尝试。 看到有不少小伙伴通过VMware虚拟机使用FydeOS,那么你就肯定知道官方包导入VMware之后,硬盘只显示分区了20GB。 如果这时候使用Fy…

物理服务器会不会被DDOS攻击?

物理服务器同样可能遭受分布式拒绝服务(DDoS)攻击。DDoS攻击的目的是通过大量的请求淹没目标服务器或网络,使其无法处理合法用户的请求,从而导致服务不可用。这种攻击并不区分服务器是物理的还是虚拟的,只要服务器连接…

同城跑腿小程序的崛起与用户体验革新

随着移动互联网的飞速发展,人们的生活方式正在发生深刻的变化。在这个快节奏的时代,时间成为了最宝贵的资源。在这样的背景下,同城跑腿小程序应运而生,以其高效、便捷的服务特性,迅速赢得了广大用户的青睐。本文将探讨…

puppet运维自动化

在现代信息技术管理中,自动化运维工具的应用已成为企业提升效率、降低成本的关键手段之一。Puppet作为一种强大的运维自动化工具,因其高效、灵活和可扩展的特点,受到越来越多企业的青睐。本文将探讨Puppet在运维自动化中的应用,包…

SpringBoot使用滑动窗口限流防止用户重复提交(自定义注解实现)

在你的项目中,有没有遇到用户重复提交的场景,即当用户因为网络延迟等情况把已经提交过一次的东西再次进行了提价,本篇文章将向各位介绍使用滑动窗口限流的方式来防止用户重复提交,并通过我们的自定义注解来进行封装功能。 首先&a…

代码随想录算法训练营第三十三天|452. 用最少数量的箭引爆气球、 435. 无重叠区间、 763.划分字母区间

452. 用最少数量的箭引爆气球 题目链接:452. 用最少数量的箭引爆气球 文档讲解:代码随想录 状态:没想出来 思路:对气球终点位置排序,从第一个气球终点位置射出箭,看这支箭可以尽可能穿过几个气球&#xff0…

Excel 宏录制与VBA编程 —— 12、日期相关

代码1 - 获取当前时间日期信息 代码2 - 时间日期格式 代码3 - 时间日期计算 代码4 - 时间日期案例 关注 笔者 - jxd

免费悬浮翻译器哪个好?测评5款悬浮翻译器

在享受休闲时光时,我们通常都希望不被打扰,对吧? 然而,有时打扰我们的并非是外界的干扰,而是在观看外语视频时,无法理解视频内容的烦躁感。 不过,今天本文将为大家揭开几款屏幕悬浮翻译软件的…

基于Java协同过滤算法的图书推荐系统设计和实现(源码+LW+调试文档+讲解等)

💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟感兴趣的可以先收藏起来,还…

ctr/cvr预估之WideDeep模型

ctr/cvr预估之Wide&Deep模型 在探索点击率(CTR)和转化率(CVR)预估的领域中,我们始终追求的是一种既能捕获数据中的线性关系,又能发现复杂模式的模型。因子分解机(Factorization Machines, …

微服务SpringCloud,SpringAliBaBa(2)

微服务02 1.网关路由 网络的关口,负责请求的路由、转发、身份校验。 有了网关之后,微服务的地址不用在暴露了,就暴露个网关地址。 快速入门 routes代表一套路由,pridicates是规则,对请求做出判断,看是哪…

[C++深入] --- malloc/free和new/delete

1 new运算符的拓展 1.1 自由存储区与堆的概念 在C++中,内存区分为5个区,分别是堆、栈、自由存储区、全局/静态存储区、常量存储区。 自由存储区是C++基于new操作符的一个抽象概念,凡是通过new操作符进行内存申请,该内存即为自由存储区。 new操作符从自由存储区(free st…

今日头条豆包大语言模型api接入python SDK,安装官方库报错,解决方法

豆包python大语言模型库安装指令: pip install volcengine-python-sdk 报错: note: This error originates from a subprocess, and is likely not a problem with pip.ERROR: Failed building wheel for volcengine-python-sdkRunning setup.py clea…

java8 将对象list中的某一个属性取出组成一个list

实体类 public class Sp {String spdm;String spmc;public Sp() {}public Sp(String spdm, String spmc) {this.spdm spdm;this.spmc spmc;}public String getSpdm() {return spdm;}public void setSpdm(String spdm) {this.spdm spdm;}public String getSpmc() {return sp…

数据库讲解---(数据库设计)

目录 一.数据库设计概述 1.1数据库设计的内容 1.1.1数据库的结构设计 1.1.2数据库的行为设计 1.2数据库设计方法 1.2.1直观设计法 1.2.2规范设计法 1.2.3计算机辅助设计法 1.2.4自动化设计法 1.3数据库设计的基本步骤 1.3.1需求分析 1.3.2概念结构设计 1.3.3逻辑结…

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述。以下是从不同角度对气象站的种类和应用范围的介绍: 一、气象站的种类 根据用途和安装环境分类: 农业气象站:专为农业生产服务,监测土壤温度、湿度等参数&am…

替代LTC3855双通道多相带差分遥测DC-DC同步控制器

特性:双通道、180 定相控制器降低了所需的输入电容和电源感应噪声高效率:达 95%RSENSE 或 DCR 电流检测可编程 DCR 温度补偿0.75%、0.6V 输出电压准确度可锁相固定频率:250kHz 至 770kHz真正的远端采样差分放大器双路 N 沟道 MOSFET 同步驱动宽 VIN 范围…

oracle 12c/19c OEM 无法访问怎么办?

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG数据库运维(如安装迁移,性能优化、故障应急处理等) 公众号:老苏畅谈运维 欢迎关注本人公众号,更多精彩与您分享。到了12…

网页中一些基本元素

1、页尾自适应 <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><style&g…

智慧校园-科研管理系统总体概述

在当前教育与科研深度融合的大潮中&#xff0c;智慧校园科研管理系统脱颖而出&#xff0c;它巧妙地融合了现代科技的力量&#xff0c;诸如云计算、大数据分析及人工智能技术&#xff0c;旨在为高等学府与科研机构打造一个高效运转、透明公开、促进协作的科研管理新生态。这一系…