深入理解C++红黑树

目录

一、引言

二、红黑树的基本概念

三、红黑树的性质

四、红黑树的实现

结构

插入

五、红黑树的应用


一、引言

红黑树(Red-Black Tree)是一种自平衡的二叉搜索树,它可以在插入、删除和查找操作中保持相对高效的性能。由于其独特的性质,红黑树在计算机科学中得到了广泛的应用,特别是在需要动态维护有序数据集合的场景中。本文将详细介绍红黑树的基本概念、性质、实现以及应用。

二、红黑树的基本概念

红黑树是一种特殊的二叉搜索树,它在每个节点上附加了一个颜色属性(红色或黑色),并通过以下五个性质来维持树的平衡:

  1. 每个节点要么是红色,要么是黑色。
  2. 根节点是黑色。
  3. 每个叶子节点(NIL节点,空节点)是黑色。
  4. 如果一个节点是红色的,则它的两个子节点都是黑色的。
  5. 对于每个节点,从该节点到其所有后代叶子节点的简单路径上,均包含相同数目的黑色节点。

三、红黑树的性质

红黑树的性质保证了它在插入、删除和查找操作中的高效性。以下是一些关键性质:

  1. 高度平衡:由于性质5的保证,红黑树的高度大致为O(log n),其中n为树中节点的数量。因此,在红黑树中查找、插入和删除操作的时间复杂度均为O(log n)。
  2. 动态维护:红黑树在插入和删除节点时,通过一系列旋转和颜色调整操作来保持树的平衡。这些操作保证了红黑树在动态变化时仍能保持较高的性能。

四、红黑树的实现

红黑树的实现涉及到节点定义、插入操作、删除操作以及旋转和颜色调整等辅助操作。以下是一个简化的C++红黑树实现框架:

  • 结构

enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv);void RotateR(Node* parent);void RotateL(Node* parent);
private:Node* _root = nullptr;
};
  • 插入

    	bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);cur->_col = RED; if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 叔叔存在且为红if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else // 叔叔不存在,或者存在且为黑{if (cur == parent->_left){//     g  //   p   u// c RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//      g  //   p     u//      c RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{Node* uncle = grandfather->_left;// 叔叔存在且为红if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else // 叔叔不存在,或者存在且为黑{// 叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppNode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;}}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppNode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (ppNode->_right == parent){ppNode->_right = subR;}else{ppNode->_left = subR;}subR->_parent = ppNode;}}

五、红黑树的应用

红黑树在许多领域都有广泛的应用,包括但不限于:

  1. 关联容器:C++标准库中的std::mapstd::set就是基于红黑树实现的关联容器。它们支持高效的插入、删除和查找操作,并且能够动态地维护有序数据集合。
  2. 路由表:在计算机网络中,路由表通常使用红黑树来存储路由信息。由于路由表需要频繁地插入、删除和查找路由条目,红黑树的高效性使得路由表能够快速地响应网络变化。
  3. 数据库索引:在数据库中,索引是提高查询性能的关键。红黑树作为一种高效的动态数据结构,可以用于实现各种索引结构,如B+树等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/32378.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux下VSCode的安装和基本使用

应用场景&#xff1a;嵌入式开发。 基本只需要良好的编辑环境&#xff0c;能支持文件搜索和跳转&#xff0c;就挺OK的。 之所以要在Linux下安装&#xff0c;是因为在WIN11上安装后&#xff0c;搜索功能基本废了&#xff0c;咋弄都弄不好&#xff0c;又不方便重装win系统&#x…

LLM功能应用的测试艺术:策略与实践

在人工智能技术日新月异的今天,大规模语言模型(LLMs)凭借其强大的自然语言处理能力,正逐渐成为众多应用和服务的核心驱动力。从智能客服到创作辅助,从信息检索到个性化推荐,LLMs的广泛应用对测试策略提出了全新的挑战。本文旨在探讨针对拥有LLM功能的应用或软件,如何制定…

韩顺平0基础学java——第29天

p592-599 线程 用户线程和守护线程 1.用户线程:也叫工作线程&#xff0c;当线程的任务执行完或通知方式结束 2守护线程:一般是为工作线程服务的&#xff0c;当所有的用户线选束&#xff0c;守护线程自动结束 3.常见的守护线程:垃圾回收机制 当我们希望当main线程结束后&…

Scala中的map函数

Scala中的map函数 在 Scala 中&#xff0c;map 是一种常见的高阶函数&#xff0c;用于对集合中的每个元素应用一个函数&#xff0c;并返回应用了该函数后的新集合&#xff0c;保持原始集合的结构不变。它的主要作用有以下几点&#xff1a; 1. 遍历集合&#xff1a; map 可以遍历…

2.APP测试-安卓adb抓取日志

1.打开手机的开发者模式&#xff0c;打开USB调试 &#xff08;1&#xff09;小米手机打开开发者模式&#xff1a; 【设置】-【我的设备】-【全部参数信息】-快速多次点击【OS版本】-进入开发者模式 &#xff08;2&#xff09;连接手机和电脑&#xff0c;手机打开USB调试 【设置…

05 - matlab m_map地学绘图工具基础函数 - 设置比例尺指北针

05 - matlab m_map地学绘图工具基础函数 - 设置比例尺指北针 0. 引言1. 关于m_scale2. 关于m_ruler3. 关于m_northarrow4. 结语 0. 引言 本篇介绍下m_map中添加指北针(m_northarrow)、比例尺(m_ruler)和进行比例缩放(m_scale)的函数及其用法 。 1. 关于m_scale m_scale用于图件…

响应式高端网站模板源码图库素材 资源下载平台源码

源码介绍 亲测可用&#xff0c;可用于做娱乐网资源网&#xff0c;功能非常的齐全无任何加密也无任何后门&#xff01;响应式高端网站模板源码图库素材 资源下载平台源码&#xff08;可运营&#xff09; 页面很美观&#xff0c;堪比大型网站的美工&#xff0c;而且页面做的也很…

扫码称重上位机

目录 一 设计原型 二 后台代码 一 设计原型 模拟工具: 二 后台代码 主程序&#xff1a; using System.IO.Ports; using System.Net; using System.Net.Sockets; using System.Text;namespace 扫码称重上位机 {public partial class Form1 : Form{public Form1(){Initialize…

红米手机RedNot11无法使用谷歌框架,打开游戏闪退的问题,红米手机如何开启谷歌框架

红米手机RedNot11无法使用谷歌框架&#xff0c;打开游戏闪退的问题&#xff0c; 1.问题描述2.问题原因3.解决方案3.1配置谷歌框架&#xff1a;3.1软件优化 4.附图 1.问题描述 红米手机打开安卓APP没有广告&#xff0c;直接闪退&#xff0c;无法使用谷歌框架 异常关键词中包含&…

P1223 排队接水

题目描述 有 &#x1d45b; 个人在一个水龙头前排队接水&#xff0c;假如每个人接水的时间为 &#x1d447;&#x1d456;&#xff0c;请编程找出这 &#x1d45b; 个人排队的一种顺序&#xff0c;使得 &#x1d45b;个人的平均等待时间最小。 输入格式 第一行为一个整数 &a…

【Android面试八股文】在onResume中是否可以测量宽高?

文章目录 一、在onResume中是否可以测量宽高1.1 不一定能够正确的获取view的宽高1.2 为什么?二、那么如何在onResume中获取view的宽高呢?2.0 Android 视图布局和绘制流程Measure, Layout 和 Draw 的顺序2.1 View 的 post 方法2.1.1 handler.post(Runnable)和handler.postDela…

【洛谷P3366】【模板】最小生成树 解题报告

洛谷P3366 -【模板】最小生成树 题目描述 如题&#xff0c;给出一个无向图&#xff0c;求出最小生成树&#xff0c;如果该图不连通&#xff0c;则输出 orz。 输入格式 第一行包含两个整数 N , M N,M N,M&#xff0c;表示该图共有 N N N 个结点和 M M M 条无向边。 接下…

Hive笔记-5

240619-Hive笔记-5 6.2.2 全表和特定列查询 1) 全表查询 hive (default)> select * from emp; select 查看你要查看的信息 from 你要从哪张表里面查 2) 选择特定列查询 hive (default)> select empno, ename from emp; 注意&#xff1a; &#xff08;1&#xff0…

HTML(12)——背景属性

目录 背景属性 背景图 背景图平铺方式 背景图位置 背景图缩放 背景图固定 背景属性 属性描述background-color背景色background-image (bgi)背景图background-repeat (bgr)背景图平铺方式background-position (bgp)背景图位置background-size (bgz)背景图缩放backgro…

scale()函数详解

scale()函数是R语言中用于标准化和中心化数据的一个函数。这个函数通常用于数据预处理&#xff0c;以便于后续的分析和建模。下面是对scale()函数的详细介绍&#xff1a; 用法 scale(x, center TRUE, scale TRUE)参数 x: 一个数值型向量、矩阵或数据框&#xff0c;是需要进…

c++编译器优化不显示拷贝构造函数

一.错误情景&#xff08;无法打印拷贝函数&#xff09; #include<iostream> using namespace std;class person { public:person(){cout << "person默认构造函数调用" << endl;}person(int age){cout << "有参构造函数调用" <…

Zookeeper 集群数据视图一致性原理

Zookeeper 集群数据视图一致性原理 在 Zookeeper 中,单一系统映像(Single System Image,SSI)指的是 Zookeeper 集群对外部客户端呈现为一个单一、一致的系统。这意味着无论客户端连接到集群中的哪 个节点,它们看到的数据和系统状态都是一致的,就像连接到同一个单一系统一…

SUSE linux的快照和恢复

snapper用于创建和管理文件系统快照&#xff0c;并在需要时实现回滚&#xff0c;它还可以用于创建用户数据的磁盘备份。snapper使用btrfs文件系统或者精简配置的被格式化成XFS或EXT4的LVM卷。snapper可以通过命令行或YaST来进行管理。 btrfs是一种copy-on-write文件系统&#x…

R语言数据分析案例33-基于logistic回归下的信用卡违约情况分析

一、选题背景 随着互联网产业的蓬勃发展&#xff0c;传统金融行业开始向着金融互联网化和互联网金融快速转型。网络信贷、信用卡等凭借门槛低、快速便捷、高收益等特点&#xff0c;借助互联网平台存在的优势&#xff0c;迅速成长。然而高收益的背后也存在着高风险&#xff0c;…

2024年,业绩大爆发的企业,都做对了一件事

作为新质生产力之一的AI技术&#xff0c;已经完成了从实验室到场景应用的“惊险一跃”&#xff0c;这背后离不开云计算、大数据技术的日趋成熟。与此同时&#xff0c;大模型、柔性计算等创新的云基础设施解决方案&#xff0c;为企业降本增效、快速高质量地发展&#xff0c;提供…