Stable Diffusion部署教程,开启你的AI绘图之路

本文环境

系统:Ubuntu 20.04 64位

内存:32G

环境安装

2.1 安装GPU驱动

在英伟达官网根据显卡型号、操作系统、CUDA等查询驱动版本。官网查询链接https://www.nvidia.com/Download/index.aspx?lang=en-us
注意这里的CUDA版本,如未安装CUDA可以先选择一个版本,稍后再安装CUDA.

image.png

点击Search

image.png


如上图,查询到合适的版本为510. 然后可以使用apt安装对应驱动版本,使用apt安装更方便一些。

# 安装510版本驱动
sudo apt install nvidia-driver-510
# 查看驱动信息
nvidia-smi

 当然你也可以使用官网下载的run文件进行安装

sudo chmod +x NVIDIA-Linux-x86_64-510.108.03.run

安装

sudo ./NVIDIA-Linux-x86_64-510.108.03.run

安装步骤操作之后就可以完成安装了

输入nvidia-smi查看显卡

chen@chen:~$ nvidia-smi 
Sat Jun 22 08:50:27 2024       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.39.01    Driver Version: 510.39.01    CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla M40           On   | 00000000:01:00.0 Off |                    0 |
| N/A   53C    P8    17W / 250W |      3MiB / 11520MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

安装CUDA

访问英伟达开发者网站先选择CUDA版本(版本要对应2.1中GPU驱动支持的CUDA版本),再根据操作系统选择对应CUDA安装命令,访问链接https://developer.nvidia.com/cuda-toolkit-archive

image.png

如上面安装确定所选择驱动对应的CUDA版本为11.6,根据安装命令安装, 以下命令适用Ubuntu 20.04 x86_64, GPU驱动510版本

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.6.2/local_installers/cuda-repo-ubuntu2004-11-6-local_11.6.2-510.47.03-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2004-11-6-local_11.6.2-510.47.03-1_amd64.deb
sudo apt-key add /var/cuda-repo-ubuntu2004-11-6-local/7fa2af80.pub
sudo apt-get update
sudo apt-get -y install cuda

2.3 安装Python 3.10

Stable Diffusion WebUI目前最低支持Python 3.10,所以直接安装3.10版本,安装命令:

	apt install software-properties-commonadd-apt-repository ppa:deadsnakes/ppaapt updateapt install python3.10python3.10 --verison

PIP设置国内源,由于默认源在国外,所以安装可能经常会出现timeout等问题,使用国内源可以很大程度避免下载包timeout的情况。将如下内容复制到文件~/.pip/pip.conf当中,如没有该文件,先创建touch ~/.pip/pip.conf

	[global] index-url = https://pypi.tuna.tsinghua.edu.cn/simple[install]trusted-host = https://pypi.tuna.tsinghua.edu.cn  

但是有一种比较推荐的方法就是使用 Anaconda

 安装Anaconda

非常推荐使用Anaconda。Anaconda可以便捷获取包且对包能够进行管理,同时对Python环境可以统一管理的发行版本。安装命令也很简单:

	wget https://repo.anaconda.com/archive/Anaconda3-5.3.1-Linux-x86_64.shbash ./Anaconda3-5.3.1-Linux-x86_64.sh

安装步骤安装Anaconda,最后一部选择是否要安装vscode可以选N

建Python3.10.9环境,并使用该环境

	conda create -n python3.10.9 python==3.10.9conda activate python3.10.9

2.5 安装PyTorch

首先在PyTorch官网查询对应CUDA版本的Torch,如上述章节2.2中CUDA 11.6需要安装pytorch1.13.1

# 使用conda安装,两种安装方式二选一
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia# 使用pip安装,两种安装方式二选一
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116

我是使用pip安装的

三、部署Stable Diffusion WebUI

3.1 下载stable-diffusion-webui

注意首先激活Python3.10环境:

conda activate python3.10.9

然后下载stable-diffusion-webui

sudo git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

如果遇到项目clone不下来可以使用我下面的加速地址

sudo git clone https://github.moeyy.xyz/https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

安装依赖

cd到stable-diffusion-webui目录安装相应的依赖,如有访问网络超时、失败等,注意按照章节2.3中设置国内源,如果再次失败,重试几次一般都可完成安装。

cd stable-diffusion-webui
pip install -r requirements_versions.txt
pip install -r requirements.txt

启动stable-diffusion-webui

安装完成后,执行如下启动命令:

python launch.py --listen --enable-insecure-extension-access

这一步骤会下载一些常用模型,如果遇到下载失败,根据报错提示在huggingface.co下载模型放到对应目录,如下载stable-diffusion-v1-5模型,搜索找到https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main

每次启动都需要输入一长串命令,比较麻烦,可以写一个shell

sudo vim start.sh

里面输入

sudo /home/chen/anaconda3/envs/python3.10.9/bin/python launch.py --listen --enable-insecure-extension-access

/home/chen是当前我的用户目录,anaconda3创建的虚拟环境是python3.10.9 就写这个python路径anaconda3/envs/python3.10.9

sudo chmod +x start.sh

启动项目

chen@chen:/data/stable-diffusion-webui$ ./start.sh 
[sudo] password for chen: 
Sorry, try again.
[sudo] password for chen: 
Python 3.10.9 (main, Mar  8 2023, 10:47:38) [GCC 11.2.0]
Version: v1.9.4
Commit hash: feee37d75f1b168768014e4634dcb156ee649c05
Launching Web UI with arguments: --listen --enable-insecure-extension-access
no module 'xformers'. Processing without...
No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, you are using PyTorch 1.13.1+cu116. You might want to consider upgrading.
no module 'xformers'. Processing without...
No module 'xformers'. Proceeding without it.
==============================================================================
You are running torch 1.13.1+cu116.
The program is tested to work with torch 2.1.2.
To reinstall the desired version, run with commandline flag --reinstall-torch.
Beware that this will cause a lot of large files to be downloaded, as well as
there are reports of issues with training tab on the latest version.Use --skip-version-check commandline argument to disable this check.
==============================================================================
Loading weights [63d370e256] from /data/stable-diffusion-webui/models/Stable-diffusion/a31_style.safetensors
Running on local URL:  http://0.0.0.0:7860To create a public link, set `share=True` in `launch()`.
Startup time: 14.5s (prepare environment: 2.3s, import torch: 4.9s, import gradio: 1.3s, setup paths: 1.3s, initialize shared: 0.3s, other imports: 1.3s, list SD models: 0.2s, load scripts: 1.5s, create ui: 0.8s, gradio launch: 0.6s).
Creating model from config: /data/stable-diffusion-webui/configs/v1-inference.yaml
/home/chen/anaconda3/envs/python3.10.9/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.warnings.warn(

访问服务器ip:7860

随便画一张图试试

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/32056.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

破碎的像素地牢探险:游戏分享

软件介绍 《破碎的像素地牢》是开源一款地牢冒险探索类的游戏&#xff0c;融合了日系RPG经典风格&#xff0c;玩家将控制主角进行未知场景的探索。除了经典地牢玩法外&#xff0c;游戏还添加了更多创意内容&#xff0c;如黑屏状态前的挑战性等&#xff0c;使得游戏更加富有挑战…

Vue78-缓存路由组件

一、需求 路由切走的时候&#xff0c;组件会被销毁&#xff0c;路由切回来&#xff0c;组件被挂载&#xff01; 需要&#xff1a;路由切走的时候&#xff0c;组件不会被销毁。 二、代码实现 若是不加include属性&#xff0c;则在<router-view>里面展示的路由&#xff0c…

高通安卓12-Input子系统

1.Input输入子系统架构 Input Driver(Input设备驱动层)->Input core(输入子系统核心层)->Event handler(事件处理层)->User space(用户空间) 2.getevent获取Input事件的用法 getevent 指令用于获取android系统中 input 输入事件&#xff0c;比如获取按键上报信息、获…

深入理解Python中的并发与异步的结合使用

​ 在上一篇文章中&#xff0c;我们讨论了异步编程中的性能优化技巧&#xff0c;并简单介绍了trio和curio库。今天&#xff0c;我们将深入探讨如何将并发编程与异步编程结合使用&#xff0c;并详细讲解如何利用trio和curio库优化异步编程中的性能。 文章目录 并发与异步编程的区…

【数据结构与算法】二叉树的性质 详解

在二叉树的第i层上至多有多少个结点。 在二叉树的第 i 层上至多有 2 i − 1 2^{i-1} 2i−1 个结点(i≥1)。 深度为 K的二叉树至多有多少个结点。 深度为 k 的二叉树上至多含 2 k − 1 2^k - 1 2k−1 个结点(k≥1)。 在一颗二叉树中, 其叶子结点数n0和度为二的结点数n2之间…

安装CDH时报错:Parcel 不可用于操作系统分配 RHEL7,原因与解决办法~

报错信息&#xff1a; 解决办法与思路&#xff1a; 1、检查CDH包的后缀名称&#xff0c;Redhat与Centos安装时不需要修改后缀名称&#xff0c;麒麟系统安装时才需要修改。 2、目录里面需要有xxx.parcel xxx.parcel.sha manifest.json 三个文件 缺一不可&#xff08;注&#x…

Transformer预测 | 基于Transformer的锂电池寿命预测(Pytorch,CALCE数据集)

文章目录 文章概述模型描述程序设计参考资料文章概述 Pytorch实现基于Transformer 的锂电池寿命预测,环境为pytorch 1.8.0,pandas 0.24.2 随着充放电次数的增加,锂电池的性能逐渐下降。电池的性能可以用容量来表示,故寿命预测 (RUL) 可以定义如下: SOH(t)=CtC0100%, 其中,…

HarmonyOS Next 系列之可移动悬浮按钮实现(六)

系列文章目录 HarmonyOS Next 系列之省市区弹窗选择器实现&#xff08;一&#xff09; HarmonyOS Next 系列之验证码输入组件实现&#xff08;二&#xff09; HarmonyOS Next 系列之底部标签栏TabBar实现&#xff08;三&#xff09; HarmonyOS Next 系列之HTTP请求封装和Token…

MQ~消息队列能力、AMQP协议、现有选择(Kafka、RabbitMQ、RocketMQ 、Pulsar)

消息队列 消息队列看作是一个存放消息的容器&#xff0c;当我们需要使用消息的时候&#xff0c;直接从容器中取出消息供自己使用即可。由于队列 Queue 是一种先进先出的数据结构&#xff0c;所以消费消息时也是按照顺序来消费的。 常⽤的消息队列主要这 五 种&#xff0c;分别…

使用 DISPATCHERS 进行 Blueprint 之间的通信

文章目录 初始准备DISPATCHERS 的创建和绑定实现效果 初始准备 首先 UE5 默认是不提供 静态网格体编辑器也就是 Modeling Mode 的&#xff0c;这里需要从插件中添加 Modeling Tools Editor Mode 进入 Modeling Mode 模式&#xff0c;创建一个正方体 然后利用 PolyGroup Edit 和…

Vue79-路由组件独有的2个新的生命周期钩子

一、需求 news.vue路由组件被缓存了&#xff08;因为想要保留里面的输入框的数据&#xff01;&#xff09;&#xff0c;导致&#xff0c;路由页面切走&#xff0c;组件也不会被销毁&#xff0c;所以&#xff0c;beforeDestroy()函数就不会被执行&#xff0c;所以&#xff0c;定…

React+TS前台项目实战(十二)-- 全局常用组件Toast封装,以及rxjs和useReducer的使用

文章目录 前言Toast组件1. 功能分析2. 代码详细注释&#xff08;1&#xff09;建立一个reducer.ts文件&#xff0c;用于管理状态数据&#xff08;2&#xff09;自定义一个清除定时器的hook&#xff08;3&#xff09;使用rxjs封装全局变量管理hook&#xff08;4&#xff09;在to…

在scrapy中使用Selector提取数据

经院吉吉&#xff1a; 首先说明一下&#xff0c;在scrapy中使用选择器是基于Selector这个对象滴&#xff0c;selector对象在scrapy中通过XPATH或是CSS来提取数据的&#xff0c;我们可以自己创建selector对象&#xff0c;但在实际开发中我们不需要这样做&#xff0c;因为respons…

御道源码(ruoyi-vue-pro)个人使用小结

御道源码&#xff08;ruoyi-vue-pro&#xff09;个人使用小结 一、Git地址 1、平台项目简介及地址 2、开发指南&#xff0c;如图所示&#xff0c;部分功能需要收费&#xff0c;可自行了解 二、项目文件夹结构示例&#xff1a; 三、技术介绍 1.基于 Spring Boot MyBatis P…

dll丢失应该怎么解决,总结5种解决DLL丢失问题的方法

在数字时代&#xff0c;我们与计算机的每一天都密不可分。然而&#xff0c;就像所有技术产品一样&#xff0c;我们的计算设备也时不时地会出现一些问题&#xff0c;让人头疼不已。就在上周&#xff0c;我遭遇了一个令人崩溃的技术挑战——DLL文件丢失。这个看似微不足道的小问题…

【MySQL】 -- 事务

如果对表中的数据进行CRUD操作时&#xff0c;不加控制&#xff0c;会带来一些问题。 比如下面这种场景&#xff1a; 有一个tickets表&#xff0c;这个数据库被两个客户端机器A和B用时连接对此表进行操作。客户端A检查tickets表中还有一张票的时候&#xff0c;将票出售了&#x…

【Linux基础IO】深入理解缓冲区

缓冲区在文件操作的过程中是比较重要的&#xff0c;理解缓冲区向文件刷新内容的原理可以更好的帮助我们更深层的理解操作系统内核对文件的操作。 FILE 因为IO相关函数与系统调用接口对应&#xff0c;并且库函数封装系统调用&#xff0c;所以本质上&#xff0c;访问文件都是通过…

ES数值类型慢查询优化

现象 某个查询ES接口慢调用告警&#xff0c;如图&#xff0c;接口P999的耗时都在2500ms: 基本耗时都在查询ES阶段&#xff1a; 场景与ES设定 慢调用接口为输入多个条件分页查询&#xff0c;慢调用接口调用的ES索引为 express_order_info&#xff0c;该索引通过DTS(数据同步…

STM32人工智能检测-筛选机器人

前言 本文描述了一种使用STM32进行机器人筛选的办法。筛选对象是我的粉s&#xff0c;删选办法是瞪眼法。 问题现象 每次当我的STM32 向外界发出一篇新的的报文&#xff0c;总能在1H之内得到focus&#xff0c;格式如下 [title][body][tail]于是我对各个focus 我报文的对象进…

Redis数据过期、淘汰策略

数据过期策略&#xff1a; 惰性删除&#xff1a; 设置该key过期时间后&#xff0c;我们不去管它&#xff0c;当需要该key时&#xff0c;我们在检查其是否过期&#xff0c;如果过期&#xff0c;我们就删掉它&#xff0c;反之返回该key。 这种方式对cpu友好&#xff08;只在用…